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L Introduction

A Brief Guide to Genomics

» Deoxyribonucleic acid

NHGRI FACT SHEETS

(DNA) molecules are made e

_, (\\':\\A\/j\\ﬂl

of a double helix

DNA (Deoxyribonucleic Acid)

» Each DNA strand is made
of four nucleotides —
Adenine (A), Thymine (T),
Guanine (G), and Cytosine
(€)

» The Microarray or
Sequencing technology
allows us to identify the
nucleotide type (A, T, G, or
C) along the DNA chain NHGRI
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L Introduction

Single Nucleotide Polymorphism (SNP)

» Most common type of genetic
variation

» Represent a difference in a single
DNA building block (A-T, G-C)

» For example, a SNP T/C may
replace T with C, resulting
possible genotypes TT, TC, CC in
the population

» The number of the minor tubascan.eu.
nucleotide type (i.e., minor allele)
in the population (0, 1, 2) will be

used as the genotype data
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L Introduction

GWAS

Genome-wide Association Study
(GWAS)

DNA Sequencing \l"
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Control (without disease) genetic variations and observable traits. '
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From Quora.com and Pasaniuc B & Price AL, Nat. Rev. 2017
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L Introduction

Standard GWAS Method

Consider the phenotype vector (Y) and genotype data vector
(X;) for the SNP

» Logistic regression model E|[logit(Y)] = X;B; for
case-control studies

» Linear regression model Y = X;f; + €; for quantitative
phenotypes

» Testing Hy: B; =0

» Significance threshold P-value < 5 x 10~8, accounting for
genome-wide multiple independent tests
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L Introduction

Current GWAS Status

2018 Apr

Associations: 69,885

Studies: 5,152

Papers: 3,378

@ www.ebi.ac.uk/gwas
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L Introduction

Limitations of Standard GWAS

» |dentified significant SNPs
are often located in
non-coding DNA regions

» ~1.2% of total DNA are
known as coding regions

» Underlying biological
mechanisms are often
unknown

Classification p;rrcentages‘ ;:lmbers"‘
Intronic 40 1,047
Intergenic 32 838
Within non-coding sequence of a gene 10 262
Upstream 8 210
Downstream 4 105
Non-synonymous coding 3 79
3’ untranslated region ~1 26
Synonymous coding ~1 26
5’ untranslated region

Regulatory region

Nonsense-mediated decay transcript

Unknown ~1 26

Splice site
Gained stop codon
Frameshift in a coding sequence

GWAS Catalogue Signals as of December

2010. Freedman M.L. Nature Genetics, 2011.
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L Introduction

Age-related Macular Degeneration (AMD)
One of the leading causes of blindness in elderly people (ages
> 60)
» Risk factors include Smoking, Diet, and Genetics

» Seddon et al. (2005) estimated Heritability 46% - 71%
from the US twin study

From National Eye Institute https://www.nei.nih.gov/photo/. 10/41
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L Introduction

Standard GWAS of AMD
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Figure 1: Majority of the associated variants are of unknown

biological functions (Fritsche LG et al., 2016).
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L Introduction

Motivations

» Understand biological mechanisms for genetic association
studies

» Account for linkage disequilibrium (LD, nonrandom
correlation among SNPs), for fine-mapping “causal”
candidate signals

» Account for known functional annotations in GWAS to
prioritize functional SNPs

» Derive scalable computation algorithm for genome-wide
genotype data
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L Methods

Method Diagram

Yux1 = XnxpBpx1 + Enx1 ‘ Functional Annotation Information

N

/ Bayesian Hierarchical Model + EM-MCMC /

‘ Bayesian Functional GWAS (BFGWAS) ’
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L Methods

Bayesian Hierarchical Model

Joint linear regression model
Yux1 =Xn><pﬁp><l+£n><17 ENMN(O, T_II). (1)

Prior:
> Bi, ~1,N(0,7 ;) + (1 —m,) &, for variants of annotation ¢

» Introduce a latent indicator vector v, , , equivalently

Y, ~ Bernoulli(m;), B_, ~ o(-), By ~MVN (0, v,
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Parameters of Interest

» Category-specific (Enrichment parameters):

> 6’ = (o},...,0p): Effect-size variance for associated
variants per annotation

» SNP-specific (Association evidence):
» Bi: Genetic effect-size

» E[y]: Bayesian posterior inclusion probability (Bayesian
PP), i.e., probability of being an associated SNP

» Region-level (Association evidence):
» Regional-PP: Regional posterior inclusion probability, i.e.,
probability of being a risk locus
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L Methods

Bayesian Hierarchical Model

» Hierarchical priors
» m, ~ Beta(ay,by);

> qu ~ InverseGamma(ky,k;);

» T~ Gamma(ks,ky)
» The joint posterior distribution

P(B,y,6%,7,7|Y,X,A) (2)
P(Y|X,B,y.7)P(B|A, &, 6%, 7)P(Y|®)P(7)P(67)P(1),

» Product of Likelihood and Priors

» Challenges of Standard MCMC: memory usage and
convergence rate
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EM-MCMC Algorithm

Setup initial
category
specific

parameters

With current
category
specific

parameters

‘ E-step

Run MCMC in
genome block

1

Run MCMC in
genome block
k..

Run MCMC in
genome block

il
Update
category
specific
| parameters

-

Enabled
genome-wide
analysis

Improved MCMC
convergence rate
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MCMC Algorithm
Given category-specific parameters (nq,crj) and residual
variance 7'

» Propose a new indicator vector y
» Calculate conditional posterior likelihood

~1/2 T T —1yT T
P(Y.X) < 0™ exp { S¥ XV, XY b, Q= Vi XT X1

» Apply Metropolis-Hastings algorithm
» If accepted, update effect-size estimates:
~ —1
T —1 T
By = [XMXM +Vy } Xin¥
» Summary statistics (X”X,XTY) can be used here to save

computational cost
19/41
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Summary Statistics from Standard GWAS and LD

Assume both phenotype vector Y and genotype vector X; are
centered:

» Under the single variant model Y = X;f3; + ¢
Bi=(xIx)"'x]y

Any element of XY can be approximated by ;(X7X;)
LD coefficient (i.e., correlation) between X; and X;:

v

v

xTX;

1

(XTX)(XX;)

rjj =

v

[XTX]; can be approximated by 7 ( (xT XJ(XfX,))
XTX; ~ 2nf;(1 —f;) with minor allele frequency (MAF) f;

v
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Using summary statistics saves up to 90% computation time for
MCMC with comparable results

Effect-size Estimates Effect-size Estimates PP Estimates
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Figure 2: Using Summary Statistics vs. Individual-level Data.
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EM Updates
MAPs (maximum a posteriori estimates):
Let ¥, = E[yq]
» Causal probability per annotation
- Y1 G, tag—1
¢ mg+ag+by—?2

» Effect-size variance per annotation

= _TL, " (,B8) + 2k
O,
L, 2k 1)
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LSimulation Studies

Simulation Setup

» Real genotype data from the AMD GWAS (100 x 5,000
variants)

» Two complementary annotations, “coding” and
“noncoding”, following the pattern observed in the real
AMD data

» Two causal SNPs in LD for 10% genome-block
» 53x enrichment for the “coding” variants

» Quantitative traits with a total 15% heritability equally
explained by 20 causal SNPs
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LSimulaticm Studies

Highest Power by BFGWAS

Average ROC curves

Results of 100

0.4- Method
repeated =BrGWAS
simulations fGWAS

True Positive Rate (power)

0.0-
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False Positive Rate
[m] =l =
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LSimulaticm Studies

Highest Power to Discover Multiple Causals

SNP1: True causal
with more
significant P-value

SNP2: Second
true causal

Higher ranks
(smaller values)
suggest higher
power
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Real Application with AMD GWAS Data
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LF{eal Application with AMD GWAS Data

International AMD Genomics Consortium Data

v

~10M low-frequency and common variants (MAF>0.5%)

» ~ 16K cases and ~18K controls (unrelated European)

v

Phenotypes adjusted for age, gender, DNA source, and
first 2 principal components

v

GWAS results with gene-based annotations
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LFleal Application with AMD GWAS Data

Gene-based Annotations

Annotated by SeattleSeq:

5 UTR Coding region

» Non-synonymous (42,005) :"v;g:::;nm\ sum
~ Synonymous (67,165) B S AN
> Intronic (3,679,235) Dors RN
> Intergenic (5,512’423) O W W AAAAA
» Other genomic (565,916, (n eyiopas) l
UTR, non-coding exons, O e— )
upstream and
downstream)

http://nitro.biosci.

arizona.edu/ 2041
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I—Fheal Application with AMD GWAS Data

BFGWAS Results with Gene-based Annotations

Colored variants with Bayesian PPs > 0.1068 (~p-value < 5 x 1078).
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LF{eal Application with AMD GWAS Data

BFGWAS Results with Gene-based Annotations

By Bayesian PP >0.1068, our method identified 150 variants
with association evidence

Non-syn  Coding-syn Intronic  Intergenic ~ Other-genomic
Associations 47 4 54 18 27
Enrichment 72x 4x 0.9x 0.2x 3x

By Regional-PP > 0.95, our method identified 5 potentially
novel loci, in addition to 32 known loci (Fritsche LG et al., 2016)
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LF{eal Application with AMD GWAS Data

5 Potentially Novel Loci

Annotation SNP/Gene Previous Associations

Missense rs7562391/PPIL3

Missense rs61751507/CPN1 Age-related Hearing Impairment
(Fransen E et al., 2015)

Missense rs2232613/LBP Encodes Lipid Transfer Protein

(Masson D et al., 2009)
Downstream  rs114348558/ZNRD1-AS1  Lipid Metabolisms

(Kettunen J et al., 2012)
Splice rs6496562/ABHD2 Coronary Artery Disease

(Nikpay M et al., 2015)

> Known AMD risk loci CETP, APOE, and LIPC are also associated with Lipid
Metabolisms and Coronary Artery Disease (Kettunen J et al., 2012, Nikpay M et
al., 2015)

» Known AMD risk loci CETP is part of the Lipid Transfer Protein family (Masson D
et al., 2009)
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LFleal Application with AMD GWAS Data

LocusZoom plots around the Non-synonymous SNP
rs4151667 (purple triangle).

Locus Around rs4151667 Locus Around rs4151667 Locus Around rs4151667
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Figure 3: GWAS (left) vs. FGWAS (middle; Pickrell JK, AJHG 2014)
vs. BFGWAS (right) for example locus #8.
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LReal Application with AMD GWAS Data

Model Comparison

» Modell: top 2 SNPs (Intronic) by sequential forward
selection

» Model2: top 2 SNPs (Non-synonymous) by BFGWAS

Modelid Model2 Difference
AIC 95,857.36 95,752.63 104.73
BIC 95,891.1 95,786.36 104.74
—Log-likelihood 47,924.68 47,872.31 52.37
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LF{eal Application with AMD GWAS Data

Haplotype Analysis

Haplotype with lead SNP rs116503776 from standard GWAS and top 2
SNPs rs4151667, rs115270436 by BFGWAS

rs116503776  rs4151667 rs115270436 Freq OddsRatio P-value

SKIvaL CFB SKIVAaL
A A G 0.3% 0.364 8.9x 101
A T G 6.6% 0.522 1.5x 10736
A A A 3.2% 0.561 5.0 x 10736
A T A 1.7% 1.102 9.2 %102
G T A 87.8% - Reference

Haplotype analysis by Fritsche LG et al. (2016) also found
rs116503776/SKIV2L tags two previously identified Non-synonymous SNPs
rs4151667/CFB, rs641153/CFB.
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LFteal Application with AMD GWAS Data

Example Locus C3

LocusZoom plots around the known Non-synonymous SNP
rs147859257 (purple triangle).

Locus Around rs147859257 Locus Around rs147859257 Locus Around rs147859257
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Figure 4: GWAS (left) vs. FGWAS (middle; Pickrell JK, AJHG 2014)
vs. BFGWAS (right).

36/41



I—Fheal Application with AMD GWAS Data

Enrichment Results

Gene-based Annotation Gene-based Annotation .
704 Gene-based Annotation
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Figure 5: BFGWAS enrichment Results (left, middle) vs. FGWAS
(right).
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Summary

>

BFGWAS integrates functional annotations in GWAS while
accounting for LD

Computationally efficient due to the scalable EM-MCMC
algorithm and using summary statistics: (B;, 7, /i)

Provides a list of risk loci and fine-mapped association
candidates, as well as enrichment results

Software BFGWAS is freely available at
https://github.com/yjingj/bfGWAS_SS

Method paper is available at
http://www.cell.com/ajhg/abstract/
S50002-9297(17)30324-5
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LSummary

Ongoing Research Topics

» Extend BFGWAS for multiple
functional annotations

» Integrate gene expression
(transcriptomic) data in GWAS

» Study longitudinal and image
type “quantitative” phenotypes
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From Sun, Y. and Hu, Y. (2016).
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