Scalable Bayesian Method for Functional Genome-wide Association Studies

Jingjing Yang

Department of Human Genetics Emory University School of Medicine

Outline

Introduction

Methods

Simulation Studies

Real Application with AMD GWAS Data

Summary

Introduction

Methods

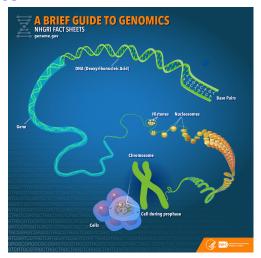
Simulation Studies

Real Application with AMD GWAS Data

Summary

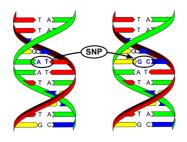
A Brief Guide to Genomics

- Deoxyribonucleic acid (DNA) molecules are made of a double helix
- Each DNA strand is made of four nucleotides — Adenine (A), Thymine (T), Guanine (G), and Cytosine (C)
- The Microarray or Sequencing technology allows us to identify the nucleotide type (A, T, G, or C) along the DNA chain



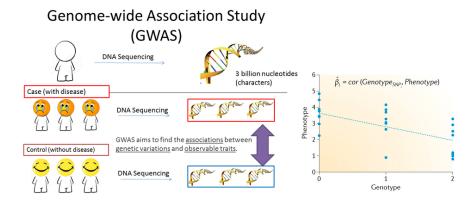
Single Nucleotide Polymorphism (SNP)

- Most common type of genetic variation
- Represent a difference in a single DNA building block (A-T, G-C)
- For example, a SNP T/C may replace T with C, resulting possible genotypes TT, TC, CC in the population
- The number of the minor nucleotide type (i.e., minor allele) in the population (0, 1, 2) will be used as the genotype data



tubascan.eu.

GWAS



From Quora.com and Pasaniuc B & Price AL, Nat. Rev. 2017

Standard GWAS Method

Consider the phenotype vector (Y) and genotype data vector (X_i) for the SNP i

- ▶ Logistic regression model $E[logit(Y)] = X_i \beta_i$ for case-control studies
- Linear regression model $Y = X_i \beta_i + \varepsilon_i$ for quantitative phenotypes
- ► Testing H_0 : $\beta_i = 0$
- ▶ Significance threshold **P-value** $\leq 5 \times 10^{-8}$, accounting for genome-wide multiple independent tests

Current GWAS Status

2018 Apr

Associations: 69,885

Studies: 5,152

Papers: 3,378

www.ebi.ac.uk/gwas

Limitations of Standard GWAS

- Identified significant SNPs are often located in non-coding DNA regions
- Underlying biological mechanisms are often unknown

Classification	Approximate percentages ^a	Approximate numbers ^a
Intronic	40	1,047
Intergenic	32	838
Within non-coding sequence of a gene	10	262
Upstream	8	210
Downstream	4	105
Non-synonymous coding	3	79
3' untranslated region	~1	26
Synonymous coding	~1	26
5' untranslated region		
Regulatory region		
Nonsense-mediated decay transcript		
Unknown	~1	26
Splice site		
Gained stop codon		
Frameshift in a coding sequence		

GWAS Catalogue Signals as of December 2010. Freedman M.L. Nature Genetics, 2011.

Age-related Macular Degeneration (AMD)

One of the leading causes of blindness in elderly people (ages > 60)

- Risk factors include Smoking, Diet, and Genetics
- Seddon et al. (2005) estimated Heritability 46% 71% from the US twin study

Standard GWAS of AMD

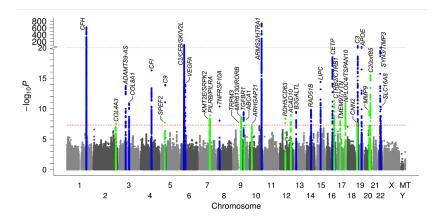


Figure 1: Majority of the associated variants are of unknown biological functions (Fritsche LG et al., 2016).

Motivations

- Understand biological mechanisms for genetic association studies
- Account for linkage disequilibrium (LD, nonrandom correlation among SNPs), for fine-mapping "causal" candidate signals
- Account for known functional annotations in GWAS to prioritize functional SNPs
- Derive scalable computation algorithm for genome-wide genotype data

- Methods

Introduction

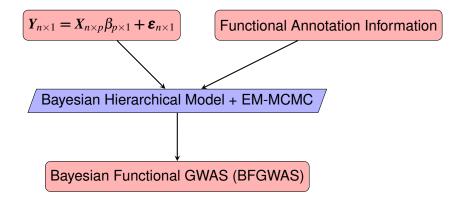
Methods

Simulation Studies

Real Application with AMD GWAS Data

Summary

Method Diagram



Bayesian Hierarchical Model

Joint linear regression model

$$Y_{n\times 1} = X_{n\times p} \beta_{p\times 1} + \varepsilon_{n\times 1}, \quad \varepsilon \sim MN(0, \tau^{-1}I).$$
 (1)

Prior:

- $ightharpoonup eta_{i_q} \sim \pi_q N(0, au^{-1} \sigma_q^2) + (1 \pi_q) \delta_0$, for variants of annotation q
- ▶ Introduce a latent indicator vector $\mathbf{\gamma}_{p\times 1}$, equivalently

$$\gamma_{i_q} \sim Bernoulli(\pi_q), \ \beta_{-\gamma} \sim \delta_0(\cdot), \ \beta_{\gamma} \sim MVN_{|\gamma|}(0, \tau^{-1}V_{\gamma})$$

Parameters of Interest

- Category-specific (Enrichment parameters):
 - $\pi = (\pi_1, ..., \pi_Q)$: Causal probability per annotation
 - $\sigma^2 = (\sigma_1^2, ..., \sigma_Q^2)$: Effect-size variance for associated variants per annotation
- SNP-specific (Association evidence):
 - β_i: Genetic effect-size
 - $E[\gamma]$: Bayesian posterior inclusion probability (Bayesian PP), i.e., probability of being an associated SNP
- ► Region-level (Association evidence):
 - Regional-PP: Regional posterior inclusion probability, i.e., probability of being a risk locus

Bayesian Hierarchical Model

- Hierarchical priors

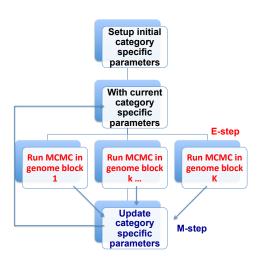
 - $\pi_q \sim Beta(a_q, b_q);$ $\sigma_q^2 \sim InverseGamma(k_1, k_2);$
 - \bullet $\tau \sim Gamma(k_3, k_4)$
- The joint posterior distribution

$$P(\boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\sigma}^{2}, \boldsymbol{\pi}, \tau | \boldsymbol{Y}, \boldsymbol{X}, \boldsymbol{A}) \propto$$

$$P(\boldsymbol{Y} | \boldsymbol{X}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \tau) P(\boldsymbol{\beta} | \boldsymbol{A}, \boldsymbol{\pi}, \boldsymbol{\sigma}^{2}, \tau) P(\boldsymbol{\gamma} | \boldsymbol{\pi}) P(\boldsymbol{\pi}) P(\boldsymbol{\sigma}^{2}) P(\tau),$$
(2)

- Product of Likelihood and Priors
- Challenges of Standard MCMC: memory usage and convergence rate

EM-MCMC Algorithm



Enabled genome-wide analysis

Improved MCMC convergence rate

MCMC Algorithm

Given category-specific parameters (π_q, σ_q^2) and residual variance τ^{-1} :

- Propose a new indicator vector γ
- Calculate conditional posterior likelihood

$$P(\gamma|Y,X) \propto |\Omega|^{-1/2} \exp\left\{\frac{\tau}{2} Y^T X_{|\gamma|} V_{\gamma} \Omega^{-1} X_{|\gamma|}^T Y\right\}, \ \Omega = V_{|\gamma|} X_{|\gamma|}^T X_{|\gamma|} + I$$

- Apply Metropolis-Hastings algorithm
- If accepted, update effect-size estimates:

$$\widehat{oldsymbol{eta}}_{|\gamma|} = \left[X_{|\gamma|}^T X_{|\gamma|} + V_{\gamma}^{-1}
ight]^{-1} X_{|\gamma|}^T Y$$

▶ Summary statistics (X^TX, X^TY) can be used here to save computational cost

Summary Statistics from Standard GWAS and LD

Assume both phenotype vector Y and genotype vector X_i are centered:

▶ Under the single variant model $Y = X_i\beta_i + \varepsilon$

$$\widehat{\beta}_i = (X_i^T X_i)^{-1} X_i^T Y$$

- Any element of X^TY can be approximated by $\widehat{\beta}_i(X_i^TX_i)$
- LD coefficient (i.e., correlation) between X_i and X_i :

$$r_{ij} = \frac{X_i^T X_j}{\sqrt{(X_i^T X_i)(X_j^T X_j)}}$$

- $[X^TX]_{ij}$ can be approximated by $\widehat{r_{ij}}\left(\sqrt{(X_i^TX_i)(X_j^TX_j)}\right)$
- ► $X_i^T X_i \approx 2nf_i(1-f_i)$ with minor allele frequency (MAF) f_i

Using summary statistics saves up to 90% computation time for MCMC with comparable results

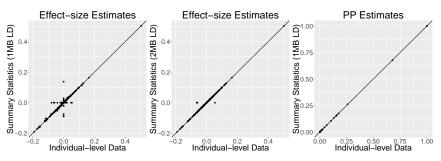


Figure 2: Using Summary Statistics vs. Individual-level Data.

EM Updates

MAPs (maximum a posteriori estimates):

Let
$$\widehat{\gamma_{jq}} = E[\gamma_{jq}]$$

Causal probability per annotation

$$\widehat{\pi_{q}} = \frac{\sum_{j_{q}=1}^{m_{q}} \widehat{\gamma_{j_{q}}} + a_{q} - 1}{m_{q} + a_{q} + b_{q} - 2}$$

Effect-size variance per annotation

$$\widehat{\sigma_{q}^{2}} = \frac{\tau \sum_{j_{q}=1}^{m_{q}} (\widehat{\gamma_{j_{q}}} \widehat{\beta_{j_{q}}^{2}}) + 2k_{2}}{\sum_{j_{q}=1}^{m_{q}} \widehat{\gamma_{j_{q}}} + 2(k_{1}+1)}$$

Introduction

Methods

Simulation Studies

Real Application with AMD GWAS Data

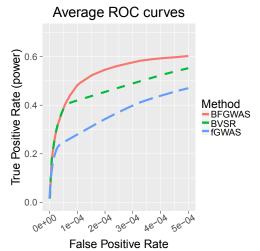
Summary

Simulation Setup

- Real genotype data from the AMD GWAS (100 x 5,000 variants)
- Two complementary annotations, "coding" and "noncoding", following the pattern observed in the real AMD data
- Two causal SNPs in LD for 10% genome-block
- 53x enrichment for the "coding" variants
- Quantitative traits with a total 15% heritability equally explained by 20 causal SNPs

Highest Power by BFGWAS

Results of 100 repeated simulations

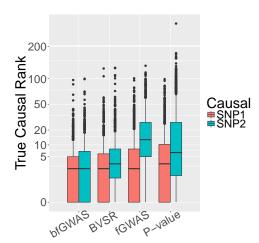


Highest Power to Discover Multiple Causals

SNP1: True causal with more significant P-value

SNP2: Second true causal

Higher ranks (smaller values) suggest higher power



Introduction

Methods

Simulation Studies

Real Application with AMD GWAS Data

Summary

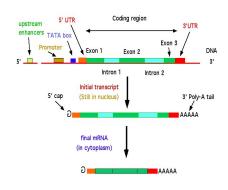
International AMD Genomics Consortium Data

- ► ~10M low-frequency and common variants (MAF>0.5%)
- ► ~ 16K cases and ~18K controls (unrelated European)
- Phenotypes adjusted for age, gender, DNA source, and first 2 principal components
- GWAS results with gene-based annotations

Gene-based Annotations

Annotated by SeattleSeq:

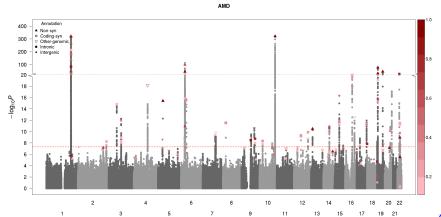
- ► Non-synonymous (42,005)
- Synonymous (67,165)
- ► Intronic (3,679,235)
- Intergenic (5,512,423)
- Other genomic (565,916, UTR, non-coding exons, upstream and downstream)



http://nitro.biosci.

BFGWAS Results with Gene-based Annotations

Colored variants with Bayesian PPs > 0.1068 (\sim p-value < 5×10^{-8}).



BFGWAS Results with Gene-based Annotations

By Bayesian PP >0.1068, our method identified 150 variants with association evidence

	Non-syn	Coding-syn	Intronic	Intergenic	Other-genomic
Associations	47	4	54	18	27
Enrichment	72x	4x	0.9x	0.2x	3x

By Regional-PP > 0.95, our method identified 5 potentially novel loci, in addition to 32 known loci (Fritsche LG et al., 2016)

5 Potentially Novel Loci

Annotation	SNP/Gene	Previous Associations
Missense	rs7562391/PPIL3	
Missense	rs61751507/CPN1	Age-related Hearing Impairment (Fransen E et al., 2015)
Missense	rs2232613/LBP	Encodes Lipid Transfer Protein (Masson D et al., 2009)
Downstream	rs114348558/ZNRD1-AS1	Lipid Metabolisms (Kettunen J et al., 2012)
Splice	rs6496562/ABHD2	Coronary Artery Disease (Nikpay M et al., 2015)

- Known AMD risk loci CETP, APOE, and LIPC are also associated with Lipid Metabolisms and Coronary Artery Disease (Kettunen J et al., 2012, Nikpay M et al., 2015)
- Known AMD risk loci CETP is part of the Lipid Transfer Protein family (Masson D et al., 2009)

LocusZoom plots around the **Non-synonymous** SNP *rs4151667* (purple triangle).

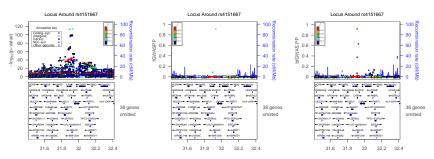


Figure 3: GWAS (left) vs. FGWAS (middle; Pickrell JK, AJHG 2014) vs. BFGWAS (right) for example locus #8.

Model Comparison

- Model1: top 2 SNPs (Intronic) by sequential forward selection
- Model2: top 2 SNPs (Non-synonymous) by BFGWAS

	Model1	Model2	Difference
AIC	95,857.36	95,752.63	104.73
BIC	95,891.1	95,786.36	104.74
_Log-likelihood	47,924.68	47,872.31	52.37

Haplotype Analysis

Haplotype with lead SNP *rs116503776* from standard GWAS and top 2 SNPs *rs4151667*, *rs115270436* by BFGWAS

rs116503776	rs4151667	rs115270436	Freq	OddsRatio	P-value
SKIV2L	CFB	SKIV2L			
Α	Α	G	0.3%	0.364	8.9×10^{-11}
Α	Т	G	6.6%	0.522	1.5×10^{-86}
Α	Α	Α	3.2%	0.561	5.0×10^{-36}
Α	Т	Α	1.7%	1.102	9.2×10^{-2}
G	Т	Α	87.8%	-	Reference

Haplotype analysis by Fritsche LG et al. (2016) also found *rs116503776/SKIV2L* tags two previously identified **Non-synonymous** SNPs *rs4151667/CFB*, *rs641153/CFB*.

Example Locus *C3*

LocusZoom plots around the known **Non-synonymous** SNP *rs147859257* (purple triangle).

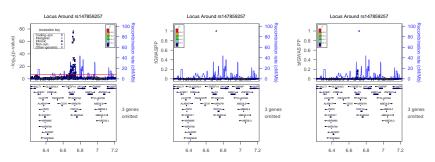


Figure 4: GWAS (left) vs. FGWAS (middle; Pickrell JK, AJHG 2014) vs. BFGWAS (right).

Enrichment Results

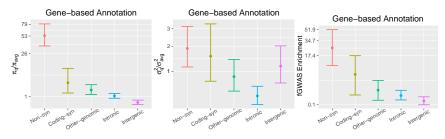


Figure 5: BFGWAS enrichment Results (left, middle) vs. FGWAS (right).

Summary

Introduction

Methods

Simulation Studies

Real Application with AMD GWAS Data

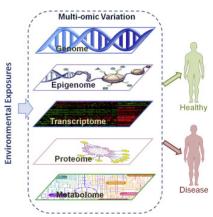
Summary

Summary

- ▶ BFGWAS integrates functional annotations in GWAS while accounting for LD
- ► Computationally efficient due to the scalable EM-MCMC algorithm and using summary statistics: $(\widehat{\beta}_i, \widehat{r_{ij}}, f_i)$
- Provides a list of risk loci and fine-mapped association candidates, as well as enrichment results
- ➤ Software BFGWAS is freely available at https://github.com/yjingj/bfGWAS_SS
- Method paper is available at http://www.cell.com/ajhg/abstract/ S0002-9297(17)30324-5

Ongoing Research Topics

- Extend BFGWAS for multiple functional annotations
- Integrate gene expression (transcriptomic) data in GWAS
- Study longitudinal and image type "quantitative" phenotypes



From Sun, Y. and Hu, Y. (2016).

Acknowledgments

- University of Michigan
 - Gonçalo Abecasis
 - Lars Fritsche
 - Xiang Zhou
- ► International AMD Genomics Consortium, http://eaglep.case.edu/iamdgc_web/

