Improved Score Statistics for Meta-analysis in Single-variant and Gene-level Association Studies

Sai Chen, Illumina, Inc. Jingjing Yang, Emory University Gonçalo Abecasis, University of Michigan

Introduction

Methods

Simulation Studies

Real Data Analysis

Summary

Meta Analysis in GWAS

Mimicking joint GWAS using summary statistics from individual studies

- Test statistics, e.g., Z-scores, score statistics, effect-sizes with standard deviations (Cochran's Method; Meta Score Test)
- P-values (Fisher's Method)

Advantages

- Gaining power because of larger sample size
- Avoiding the hassle of combining individual-level data
- Without loss of efficacy under balanced setting (same case-control ratios)

Power Loss Under Unbalanced Setting

Current strategies

- Weight by effective sample sizes
- Weight by inverse standard errors of test statistics

Fail for Gene-level tests based on Score Statistics

- Burden (Madsen \& Browning, 2009; Liu et al., 2014)
- SKAT (Lee et al. 2013; Liu et al., 2014)
- Variable Threshold (Price et al., 2010; Liu et al., 2014)

Introduction

Methods

Simulation Studies

Real Data Analysis

Summary

Score Statistics for Linear Regression Model

- Linear regression model for study k

$$
\begin{equation*}
y_{k}=C_{k} \alpha_{k}+X_{k} \beta_{k}+\varepsilon_{k}, \varepsilon_{k} \sim N\left(0, \sigma_{k}^{2}\right) \tag{1}
\end{equation*}
$$

- Score statistics

$$
\begin{aligned}
u_{k} & =\left(X_{k}-\overline{X_{k}}\right)^{\prime}\left(y_{k}-\widehat{\mu_{k}}\right) \\
V_{k} & =X_{k}^{\prime}\left(\widehat{P_{k}}-\widehat{P}_{k} C_{k}\left(C_{k}^{\prime} \widehat{P}_{k} C_{k}\right)^{-1} C_{k}^{\prime} \widehat{P}_{k}\right) X_{k}
\end{aligned}
$$

- where

$$
\begin{aligned}
& \widehat{\mu_{k}}=C_{k} \widehat{\alpha_{k}}, \\
& \widehat{P_{k}}=\widehat{\sigma_{k}^{2}} I_{k} .
\end{aligned}
$$

Estimates for Meta Score Statistics

- Joint analysis

$$
u_{\text {joint }}=(X-\bar{X})^{\prime}(y-\widetilde{\mu}), V_{\text {joint }}=X^{\prime}\left(\widetilde{P}-\widetilde{P} C\left(C^{\prime} \widetilde{P} C\right)^{-1} C^{\prime} \widetilde{P}\right) X
$$

- Current standard meta-analysis method

$$
u_{s t d}=\sum_{k=1}^{K} u_{k}, V_{s t d}=\sum_{k=1}^{K} V_{k}
$$

- Our adjusted estimates

$$
u_{a d j}=\sum_{k=1}^{K} u_{k}-\sum_{k=1}^{K} 2 n_{k} \delta_{k}\left(f-f_{k}\right), V_{a d j}=\widetilde{\sigma^{2}}\left[\sum_{k=1}^{K}\left(\frac{V_{k}}{\widehat{\sigma_{k}^{2}}}\right)-\sum_{k=1}^{K} 4 n_{k}\left(f f^{\prime}-f_{k} f_{k}^{\prime}\right)\right],
$$

where $\delta_{k}=\widetilde{\mu}-\widehat{\mu_{k}}, \widetilde{\sigma^{2}}=\frac{1}{n-1} \sum_{k=1}^{K}\left[\left(n_{k}-1\right) \widehat{\sigma_{k}^{2}}+n_{k} \delta_{k}^{2}\right]$.

Improved Estimates for Meta Score Statistics

Figure 2: Simulations without population stratification.

- $\log 10(P$-values) of Single-Variant Meta Score Tests

Figure 3: Simulations without population stratification.

Side Effect with Population Stratification

(a) Standard Method

Burden Test

(b) Adjusted Method

Figure 4: Quantile-Quantile (QQ) plots of 20,000 null simulations.

Adjusting for Population Stratification

Recall our adjusted formulas for score statistics:

$$
u_{a d j}=\sum_{k=1}^{K} u_{k}-\sum_{k=1}^{K} 2 n_{k} \delta_{k}\left(f-f_{k}\right), V_{a d j}=\widetilde{\sigma^{2}}\left[\sum_{k=1}^{K}\left(\frac{V_{k}}{\widehat{\sigma_{k}^{2}}}\right)-\sum_{k=1}^{K} 4 n_{k}\left(f f^{\prime}-f_{k} f_{k}^{\prime}\right)\right] .
$$

First, regress $f_{k} \sim$ known population MAFs

$$
f_{k}=\sum_{p o p} \gamma_{p o p} f_{p o p}+\varepsilon
$$

Requirements:

- Phenotypes are of the same metrics, or distributions (i.e., δ_{k} dose not contain population differences)
- Good reference panel with accurate population MAFs $f_{p o p}$

Adjusting for Population Stratification

- Replace f_{k} by

$$
\zeta_{k}=f_{k}-\widehat{f_{k}}, \widehat{f_{k}}=\sum_{p o p} \widehat{\gamma_{p o p}} f_{p o p}
$$

and replace f by $\bar{\zeta}=\frac{\sum_{k=1}^{K} n_{k} \zeta_{k}}{\sum_{k=1}^{K} n_{k}}$ in our adjusted formulas.

- Set $\zeta_{k i}$ at 0 for variants without corresponding population MAFs, or with $\widehat{f_{k i}}$ falling outside of the 95% prediction confidence interval

Successfully Adjust for Population Stratification

(a) Without adjustment

Burden Test

(b) With Adjustment

Figure 5: Quantile-Quantile (QQ) plots of 20,000 null simulations.

Introduction

Methods

Simulation Studies

Real Data Analysis

Summary

Simulation Studies

Considered 5 individual studies, each with sample size 600 (cases, controls)

	Study 1	Study 2	Study 3	Study 4	Study 5
Balanced	$(300,300)$	$(300,300)$	$(300,300)$	$(300,300)$	$(300,300)$
Unbalanced	$(60,540)$	$(180,420)$	$(300,300)$	$(420,180)$	$(540,60)$

- Considered without and with population stratification
- Simulated genotypes in a 5KB region, 80\% MAFs < 5\%
- Repeated null simulations for empirical Type I Errors
- Compared power for gene-level Burden and SKAT tests

Empirical Type I Errors with $\alpha=2.5 \times 10^{-6}$

Without Population Stratification

With Population Stratification

Figure 6: Type I errors are well controlled by our meta-analysis methods under all scenarios.

Power Comparison

Without Population Stratification

Figure 7: Our method has equivalent power as joint analysis under unbalanced designs.

Power Comparison

With Population Stratification

Figure 8: Our method has higher power than standard meta-analysis method under unbalanced designs.

Introduction

Methods

Simulation Studies

Real Data Analysis
Gene-level Tests of AMD
Single Variant Tests of T2D
Summary

AMD Study

- Consisted with 26 individual studies (IAMDGC) with various case-control ratios (Fritsche et al., 2016)
- European ancestry samples $(33,976)$ without population stratification
- Analyzed rare coding variants only, with optimal MAF threshold given by Variable Threshold (VT) test
- Adjusted for independent common signals and covariates

Gene-level Association Studies

Burden tests on 3 known AMD risk loci

Gene	Joint VT	Std Meta Burden	Adj Meta Burden	Joint Burden
CFH	1.2×10^{-6}	3.2×10^{-5}	$\mathbf{2 . 1} \times \mathbf{1 0}^{-\mathbf{6}}$	$\mathbf{2 . 4} \times \mathbf{1 0}^{-7}$
CFI	1.0×10^{-8}	9.6×10^{-10}	$\mathbf{3 . 3}^{-10} \mathbf{1 0}^{-\mathbf{1 4}}$	$\mathbf{8 . 9}^{\mathbf{1}} \mathbf{1 0}^{-\mathbf{1 5}}$
TIMP3	9.0×10^{-8}	9.8×10^{-4}	$\mathbf{1 . 0} \times \mathbf{1 0}^{-\mathbf{5}}$	$\mathbf{1 . 8} \times \mathbf{1 0}^{-\mathbf{5}}$

Table 1: P-values of Joint VT (Fritsche et al., 2016), Standard (Std) Meta Burden, our Adjusted (Adj) Meta Burden, and Joint Burden tests (Madsen \& Browning, 2009).

Single Variant Association Studies of T2D

- Three individual studies of type 2 diabetes (T2D): Study FUSION METSIM MGI

Population	Finnish	Finnish	American European
Cases	1142	673	1942
Controls	155	2667	14553

- Consider genotyped variants in METSIM
- Jointly correct phenotype for Age, Gender, BMI, PC1-4
- Use 1000 Genome as reference panel for adjusting population stratification

Figure 9: Top two PCs show population stratification with these three studies.

Joint Analysis

Figure 10: Joint analysis results with inflated false positives.

Standard Meta

Figure 11: Standard meta-analysis results with power loss.

Adjusted Meta

Figure 12: Meta-analysis results by our method with adjustment for population stratification.

Introduction

Methods

Simulation Studies

Real Data Analysis

Summary

Summary

- Improved estimates for meta score statistics
- Novel strategy adjusting for population stratification
- Suitable for both single-variant and gene-level association studies
- Ensure the efficiency of meta-analysis under general settings
- Require phenotypes of the same distribution and good reference panel

Acknowledgements
Michigan Genomics Initiative (MGI), FUSION, METSIM

EMORY

UNIVERSITY
SC HOOL OF

MEDICINE

