Improved Score Statistics for Meta-analysis in Single-variant and Gene-level Association Studies

Sai Chen, Illumina, Inc. Jingjing Yang, Emory University Gonçalo Abecasis, University of Michigan

Introduction

Methods

Simulation Studies

Real Data Analysis

Meta Analysis in GWAS

Mimicking joint GWAS using summary statistics from individual studies

- Test statistics, e.g., Z-scores, score statistics, effect-sizes with standard deviations (Cochran's Method; Meta Score Test)
- P-values (Fisher's Method)

Advantages

- Gaining power because of larger sample size
- Avoiding the hassle of combining individual-level data
- Without loss of efficacy under balanced setting (same case-control ratios)

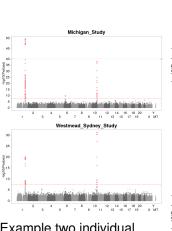
Power Loss Under Unbalanced Setting

Current strategies

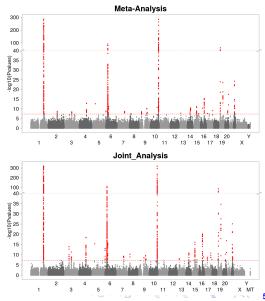
- Weight by effective sample sizes
- Weight by inverse standard errors of test statistics

Fail for Gene-level tests based on Score Statistics

- ► Burden (Madsen & Browning, 2009; Liu et al., 2014)
- ► SKAT (Lee et al. 2013; Liu et al., 2014)
- ► Variable Threshold (Price et al., 2010; Liu et al., 2014)



Example two individual studies of AMD.



Introduction

Methods

Simulation Studies

Real Data Analysis

Score Statistics for Linear Regression Model

Linear regression model for study k

$$y_k = C_k \alpha_k + X_k \beta_k + \varepsilon_k, \ \varepsilon_k \sim N(0, \sigma_k^2).$$
 (1)

Score statistics

$$u_k = (X_k - \overline{X_k})'(y_k - \widehat{\mu_k}),$$

$$V_k = X'_k (\widehat{P_k} - \widehat{P_k} C_k (C'_k \widehat{P_k} C_k)^{-1} C'_k \widehat{P_k}) X_k,$$

where

$$\widehat{\mu}_k = C_k \widehat{\alpha}_k,$$

$$\widehat{P}_k = \widehat{\sigma}_k^2 I_k.$$

Estimates for Meta Score Statistics

Joint analysis

$$u_{joint} = (X - \overline{X})'(y - \widetilde{\mu}), \ V_{joint} = X'(\widetilde{P} - \widetilde{P}C(C'\widetilde{P}C)^{-1}C'\widetilde{P})X.$$

Current standard meta-analysis method

$$u_{std} = \sum_{k=1}^{K} u_k, \ V_{std} = \sum_{k=1}^{K} V_k.$$

Our adjusted estimates

$$u_{adj} = \sum_{k=1}^{K} u_k - \sum_{k=1}^{K} 2n_k \delta_k(f - f_k), \ V_{adj} = \widetilde{\sigma^2} \left[\sum_{k=1}^{K} \left(\frac{V_k}{\widehat{\sigma_k^2}} \right) - \sum_{k=1}^{K} 4n_k (ff' - f_k f_k') \right],$$

where
$$\delta_{\mathbf{k}} = \widetilde{\mu} - \widehat{\mu_k}$$
, $\overline{\widetilde{\sigma^2}} = \frac{1}{n-1} \sum_{k=1}^K \left[(n_k - 1) \widehat{\sigma_k^2} + n_k \delta_k^2 \right]$.

Improved Estimates for Meta Score Statistics

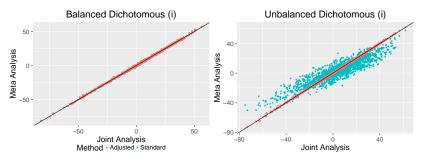


Figure 2: Simulations without population stratification.

-log10(P-values) of Single-Variant Meta Score Tests

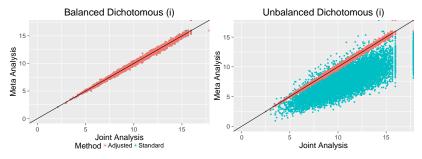


Figure 3: Simulations without population stratification.

Side Effect with Population Stratification

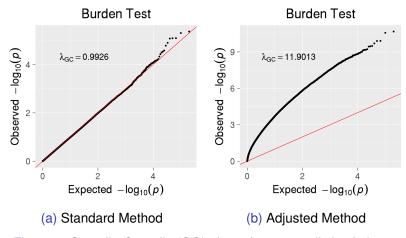


Figure 4: Quantile-Quantile (QQ) plots of 20,000 null simulations.

Adjusting for Population Stratification

Recall our adjusted formulas for score statistics:

$$u_{adj} = \sum_{k=1}^{K} u_k - \sum_{k=1}^{K} 2n_k \delta_k (\mathbf{f} - \mathbf{f}_k), \ V_{adj} = \widetilde{\sigma}^2 \left[\sum_{k=1}^{K} \left(\frac{V_k}{\widehat{\sigma_k^2}} \right) - \sum_{k=1}^{K} 4n_k (\mathbf{f}\mathbf{f}' - \mathbf{f}_k \mathbf{f}_k') \right].$$

First, regress $f_k \sim$ known population MAFs

$$f_k = \sum_{pop} \gamma_{pop} f_{pop} + \varepsilon.$$

Requirements:

- Phenotypes are of the same metrics, or distributions (i.e., δ_k dose not contain population differences)
- ▶ Good reference panel with accurate population MAFs f_{pop}

Adjusting for Population Stratification

Replace f_k by

$$\zeta_k = f_k - \widehat{f_k}, \, \widehat{f_k} = \sum_{pop} \widehat{\gamma_{pop}} f_{pop}$$

and replace f by $\overline{\zeta} = \frac{\sum_{k=1}^K n_k \zeta_k}{\sum_{k=1}^K n_k}$ in our adjusted formulas.

Set ζ_{ki} at 0 for variants without corresponding population MAFs, or with \hat{f}_{ki} falling outside of the 95% prediction confidence interval

Successfully Adjust for Population Stratification

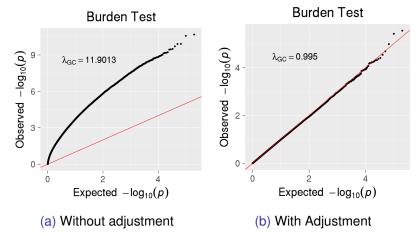


Figure 5: Quantile-Quantile (QQ) plots of 20,000 null simulations.

Introduction

Methods

Simulation Studies

Real Data Analysis

Simulation Studies

Considered 5 individual studies, each with sample size 600 (cases, controls)

	Study 1	Study 2	Study 3	Study 4	Study 5
Balanced	(300, 300)	(300, 300)	(300, 300)	(300, 300)	(300, 300)
Unbalanced	(60, 540)	(180, 420)	(300, 300)	(420, 180)	(540, 60)

- Considered without and with population stratification
- Simulated genotypes in a 5KB region, 80% MAFs < 5%</p>
- Repeated null simulations for empirical Type I Errors
- Compared power for gene-level Burden and SKAT tests

Empirical Type I Errors with $\alpha = 2.5 \times 10^{-6}$

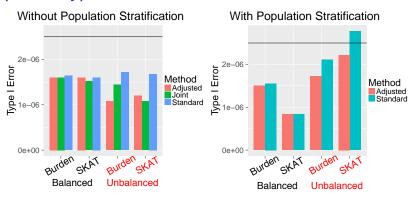


Figure 6: Type I errors are well controlled by our meta-analysis methods under all scenarios.

Power Comparison

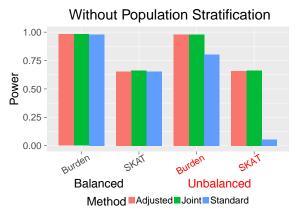


Figure 7: Our method has equivalent power as joint analysis under unbalanced designs.

Power Comparison

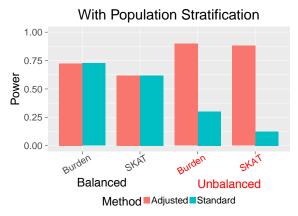


Figure 8: Our method has higher power than standard meta-analysis method under unbalanced designs.

Introduction

Methods

Simulation Studies

Real Data Analysis
Gene-level Tests of AMD
Single Variant Tests of T2D

AMD Study

- Consisted with 26 individual studies (IAMDGC) with various case-control ratios (Fritsche et al., 2016)
- European ancestry samples (33,976) without population stratification
- Analyzed rare coding variants only, with optimal MAF threshold given by Variable Threshold (VT) test
- Adjusted for independent common signals and covariates

Gene-level Association Studies

Burden tests on 3 known AMD risk loci

Gene	Joint VT	Std Meta Burden	Adj Meta Burden	Joint Burden
CFH	1.2×10^{-6}	3.2×10^{-5}	2.1×10^{-6}	2.4×10^{-7}
CFI	1.0×10^{-8}	9.6×10^{-10}	3.3×10^{-14}	8.9×10^{-15}
TIMP3	9.0×10^{-8}	9.8×10^{-4}	1.0×10^{-5}	1.8×10^{-5}

Table 1: P-values of Joint VT (Fritsche et al., 2016), Standard (Std) Meta Burden, our Adjusted (Adj) Meta Burden, and Joint Burden tests (Madsen & Browning, 2009).

Single Variant Association Studies of T2D

► Three individual studies of type 2 diabetes (T2D):

FUSION	METSIM	MGI			
Finnish	Finnish	American European			
1142	673	1942			
155	2667	14553			
	FUSION Finnish 1142	FUSION METSIM Finnish 1142 673			

- Consider genotyped variants in METSIM
- Jointly correct phenotype for Age, Gender, BMI, PC1-4
- Use 1000 Genome as reference panel for adjusting population stratification

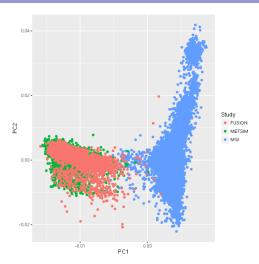


Figure 9: Top two PCs show population stratification with these three studies.

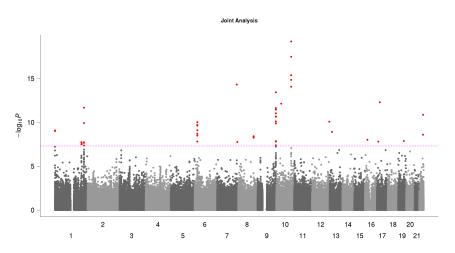


Figure 10: Joint analysis results with inflated false positives.

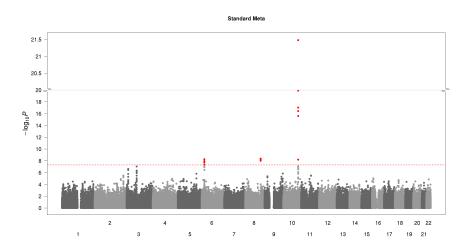


Figure 11: Standard meta-analysis results with power loss.

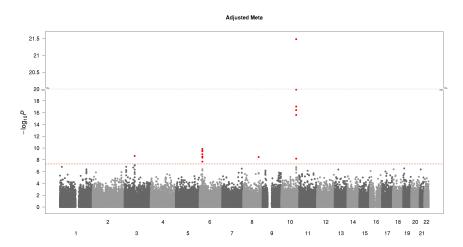


Figure 12: Meta-analysis results by our method with adjustment for population stratification.

Summary

Introduction

Methods

Simulation Studies

Real Data Analysis

- Improved estimates for meta score statistics
- Novel strategy adjusting for population stratification
- Suitable for both single-variant and gene-level association studies
- Ensure the efficiency of meta-analysis under general settings
- Require phenotypes of the same distribution and good reference panel

Acknowledgements

Michigan Genomics Initiative (MGI), FUSION, METSIM

EMORY
UNIVERSITY
SCHOOL OF
MEDICINE

