TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits

Jingjing Yang, PhD

EMORY
UNIVERSITY SCHOOLOF MEDICINE

Outline

Introduction
Methods
Transcriptome-wide Association Study
Gene Expression (GReX) Imputation Models
Gene-based Association Test
Results
Simulation Studies
Mapping Alzheimer's Dementia Related Phenotypes
TWAS Based on SKAT
Application Results with ROS/MAP Data
Summary

Introduction

Methods

Results

TWAS Based on SKAT

Summary

Etiology of Complex Diseases

Examples complex diseases

Type II Diabetes, Cardiovascular Diseases, Alzheimer's
Dementia

- Polygenic with low penetrance by individual genes
- Largely unknown genomic etiology
- Integrate multi-layers of Omics data

Overview of Genomics Data

GOAL of Mapping Complex Human Diseases

McCarthy I.M. et. al. Nature Reviews. 2008.

GWAS Findings

2018 Apr

Associations: 69,885
Studies: 5,152

Papers: 3,378

www.ebi.ac.uk/gwas
GWAS: Genome-wide Association Study

Introduction

Methods

Transcriptome-wide Association Study
Gene Expression (GReX) Imputation Models Gene-based Association Test

Results

TWAS Based on SKAT

Summary

Integrate Transcriptomic Data in GWAS

Transcriptome-wide Association Study (TWAS)

- Leverage existing public transcriptomic data resources (e.g., GTEx, GEUVADIS, DGN)
- Conduct "Functional" gene-based association test
- Improve biological interpretation
- Identify novel risk genes

Gamazon ER et. al., Nat Genetics, 2015.

Existing Tools

- PrediXcan: based on the Elastic-Net penalized linear regression model (EN).
Gamazon et. al., Nat Genetics, 2015.
- FUSION: based on the Bayesian Sparse Linear Mixed Model (BSLMM).
Gusev et. al. Nat Genetics, 2016.

Nonparametric Bayesian Model

Advantages

- Include parametric models (e.g., Elastic-Net, BSLMM) as special cases
- Better modeling the underlying complex genetic architecture of transcriptomic profiles
- Improve GReX imputation accuracy
- Improve TWAS power

Nonparametric Bayesian Model

- Considering gene expression levels $\mathbf{E}_{\mathbf{g}}$ of gene g genotype data matrix $\mathbf{X}_{\mathbf{n} \times \mathbf{p}}$ of all cis-SNPs
- \mathbf{E}_{g} are normalized and adjusted for confounding covariates such as age, sex, top genotype PCs, PEER factors of transcriptomic data
- The nonparametric Bayesian Dirichlet process regression (DPR) model (Zeng \& Zhou, Nat. Comm., 2017) is setup as:

$$
\begin{gathered}
\mathbf{E}_{\mathbf{g}}=\mathbf{X}_{\mathbf{n} \times \mathbf{p}} \mathbf{w}_{\mathbf{p} \times \mathbf{1}}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim N\left(0, \sigma_{\varepsilon}^{2} \mathbf{I}\right), \sigma_{\varepsilon}^{2} \sim I G\left(a_{\varepsilon}, b_{\varepsilon}\right) \\
w_{i} \sim N\left(0, \sigma_{\varepsilon}^{2} \sigma_{w}^{2}\right), \sigma_{w}^{2} \sim D, D \sim D P(I G(a, b), \xi), i=1, \cdots, p
\end{gathered}
$$

- Estimate cis-eQTL effect-sizes $\mathbf{w}_{\mathbf{p} \times 1}$ by MCMC or Variational Bayesian Approximation

Nonparametric Bayesian Model

Another intuitive way of viewing this nonparametric model

- σ_{w}^{2} can be viewed as a Latent variable
- Integrating out σ_{w}^{2} will induce a Nonparametric prior distribution on w_{i}
- Equivalent to a normal mixture model for w_{i}

$$
\begin{aligned}
w_{i} & \sim \pi_{0} N\left(0, \sigma_{\varepsilon}^{2} \sigma_{0}^{2}\right)+\sum_{k=1}^{+\infty} \pi_{k} N\left(0, \sigma_{\varepsilon}^{2}\left(\sigma_{k}^{2}+\sigma_{0}^{2}\right)\right) \\
\pi_{k} & =v_{k} \prod_{l=0}^{k-1}\left(1-v_{l}\right), v_{k} \sim \operatorname{Beta}(1, \xi), \xi \sim \operatorname{Gamma}\left(a_{\xi}, b_{\xi}\right) \\
\sigma_{k}^{2} & \sim \operatorname{IG}\left(a_{k}, b_{k}\right), k=0,1, \cdots,+\infty
\end{aligned}
$$

Gene-based Association Test by Existing TWAS Tools

General framework with phenotype \boldsymbol{Y}, genotype matrix \boldsymbol{X}, and covariate matrix \mathbf{Z}

$$
\begin{gathered}
g(E[\boldsymbol{Y} \mid \boldsymbol{X}, \mathbf{Z}])=\beta \widehat{\boldsymbol{G R e} \boldsymbol{X}}+\boldsymbol{Z} \boldsymbol{\alpha}, \\
\widehat{\boldsymbol{G R e} \boldsymbol{X}}=\boldsymbol{X} \hat{\boldsymbol{w}} \\
H_{0}: \beta=0
\end{gathered}
$$

Equivalent to a gene-based burden test taking cis-eQTL effect size estimates \hat{w} as variant weights

Introduction

Methods

Results
Simulation Studies
Mapping Alzheimer's Dementia Related Phenotypes

TWAS Based on SKAT

Summary

Simulation Study Design

- Use the real genotype data of gene $A B C A 7$ with 2,799 cis-SNPs with MAF $>5 \%$ and HWP $>10^{-5}$
- Training sample size $(100,300,499)$, test sample size 1,200
- Consider scenarios with various proportion of causal SNPs for gene expression, $p_{\text {causal }}=(0.01,0.05,0.1,0.2)$
- Consider scenarios with various gene expression heritability and phenotype heritability,

$$
\left(p_{e}^{2}, p_{h}^{2}\right)=((0.05,0.8),(0.1,0.5),(0.2,0.25),(0.5,0.1))
$$

- Compare PrediXcan and DPR methods with respect to gene expression prediction R^{2} and TWAS power

Figure 1: Gene expression prediction R^{2} on test data.

Figure 2: TWAS power with test data.

TWAS Power

Figure 3: Gene expression prediction R^{2} and TWAS power with various sample sizes.

ROS/MAP Data

- Prospective cohort studies of aging and dementia with participants of Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP)
- GWAS data of 2,093 European samples
- RNAseq data (transcriptomic profiles) of 499 post-mortem brain samples that also have GWAS genotype data (after QC)
- Considered two important indices of Alzheimer's dementia pathology as quantitative complex traits
- β-amyloid (Amyloid)
- Neurofibrillary tangle density (Tangles)

PrediXcan vs. DPR

TWAS of Amyloid by DPR

Figure 4: TWAS of β-Amyloid using DPR weights.

TWAS of Tangles by DPR

Figure 5: TWAS of Tangles using DPR weights.

Multiphenotype TWAS by DPR

Figure 6: Multiphenotype TWAS with β-Amyloid and Tangles using DPR weights.

TWAS Results with GWAS Summary Statistics

TWAS of known AD loci using DPR weights estimated from ROS/MAP data and public GWAS summary statistics by IGAP

Introduction

Methods

Results

TWAS Based on SKAT
Application Results with ROS/MAP Data

Summary

SKAT TWAS

Sequencial Kernel Association Test (SKAT) (Wu et. al. AJHG, 2011)

- General framework with phenotype \boldsymbol{Y}, genotype matrix \boldsymbol{X}, and covariate matrix \mathbf{Z}

$$
g(E[\boldsymbol{Y} \mid \boldsymbol{X}, \boldsymbol{Z}])=\boldsymbol{\beta}^{\prime} \boldsymbol{X}+\boldsymbol{\alpha}^{\prime} \mathbf{Z}, \boldsymbol{\beta}_{i} \sim N\left(0, w_{i}^{2} \tau\right)
$$

- $H_{0}: \tau=0$
- Variance-component score statistic with a diagonal weight matrix \boldsymbol{W} and phenotype mean $\hat{\mu}$ estimated under H_{0}

$$
Q=(y-\hat{\mu})^{\prime} K(y-\hat{\mu}), K=X W X^{\prime}
$$

- TWAS: use cis-eQTL effect size estimates \widehat{w}_{i} by DPR method as variant weights, $W_{i, i}=\widehat{w}_{i}^{2}$
- Q follows a mixture chi-square distribution under H_{0}

TWAS Based on SKAT

Application Results with ROS/MAP Data

Figure 7: SKAT TWAS with β-Amyloid.

TWAS Based on SKAT

Application Results with ROS/MAP Data

Figure 8: SKAT TWAS with Tangles.

Introduction

Methods

Results

TWAS Based on SKAT

Summary

Summary

- Nonparametric Bayesian method is preferred when the proportion of causal SNPs >0.01 or expression heritability <0.2
- TWAS results can help interpret significant risk gene loci
- Promising TWAS results in ROS/MAP application studies by using nonparametric Bayesian method
- Potentially novel loci TRAPPC6A, ZNF234, HSPBAP1 for AD pathological indexes
- Known AD loci ADAM10, CD2AP, TREM2 identified by TWAS
- Multiple phenotype TWAS can leverage pleiotropy

Published Paper

AJHG

ARTICLE I VOLUME 105, ISSUE 2, P258-266, AUGUST 01, 2019

TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits

Sini Nagpal ${ }^{11}$ • Xiaoran Meng ${ }^{11}$ • Michael P. Epstein • ... Aliza P. Wingo • Thomas S. Wingo •
Jingjing Yang $\circ \square \cdot$ Show all authors • Show footnotes
Open Archive • Published: June 20, 2019 • DOI: https://doi.org/10.1016/j.ajhg.2019.05.018 •
(h) Check for updates

Software Resource

Transcriptome-Integrated Genetic Association Resource
https://github.com/yanglab-emory/TIGAR

- Implement both Elastic-Net and DPR models for training GReX imputation models
- Integrate training GReX imputation model, GReX prediction, TWAS in the same tool
- TWAS based on Burden test and SKAT
- TWAS with both individual-level and summary-level GWAS data
- TWAS with multiple phenotypes
- Multi-thread computation
- Load VCF/Dosage genotype input files

Acknowledgement

Yang Lab

github.com/
yanglab-emory

Rush Alzheimer's Disease Center

 www.radc.rush.edu

Department of Human Genetics

*
 EMORY SCHOOL OF MEDICINE

