Bayesian Genome-wide TWAS method integrating both cis- and trans- eQTL with GWAS summary statistics

Jingjing Yang, PhD

EMORY
UNIVERSITY SCHOOLOF MEDICINE

Outline

Motivation
Methods of Bayesian Genome-Wide TWAS (BGW-TWAS)
Simulation Studies
TWAS of AD Related Phenotypes
With individual-level GWAS data
With IGAP summary-level GWAS data
Summary

Genetic Etiology of Complex Diseases

- Polygenic with low penetrance by individual genes
- Composed of multiple omics layers
- Biological mechanisms are largely unknown

Genome-wide Association Study (GWAS) Findings

Transcriptome-wide Association Study (TWAS)

[Wainberg M. et. al. Nat. Genetics. 2019.]

Existing TWAS Tools

- Tools for TWAS:

■ PrediXcan. [Gamazon et al., Nat. Genetics. 2015]
■ FUSION. [Gusev et al., Nat. Genetics. 2016]
■ TIGAR. [Nagpal et al., AJHG. 2019]

- Caveat: utilize only cis-eQTL, defined by proximity to gene

Variants around a transcription starting site, cis or trans acting. [Nica \& Dermitzakis, Philos Trans R Soc Lond B Biol Sci. 2013.]

Importance of trans-eQTL

- Gene expression levels are affected by both cis and trans-eQTL. [Gusev et al., Nat. Genetics. 2016]
- In whole blood tissue, > 30\% genes have significant trans-eQTL. [Lloyd-Jones et al., AJHG, 2017]
- In eQTLGen Consortium studies of 31,684 blood samples, trans-eQTL were detected for 37% of 10,317 trait-associated GWAS signals, which primarily working through regulations by transcription factors. [Vosa U. et al., Nat. Genetics. 2021]

Bayesian Genome-Wide TWAS (BGW-TWAS)

 Bayesian Variable Selection Regression (BVSR) Model1. Consider quantitative gene expression trait T_{g} and "spike-and-slab" priors for "eQTL" effect size w_{i}

$$
\begin{aligned}
\boldsymbol{T}_{g} & =\boldsymbol{X} \boldsymbol{w}+\boldsymbol{\varepsilon} \\
w_{i} & \sim \pi_{q} N\left(0, \sigma_{\varepsilon}^{2} \sigma_{q}^{2}\right)+\left(1-\pi_{q}\right) \boldsymbol{\delta}_{0}\left(w_{i}\right) \\
\varepsilon_{i} & \sim N\left(0, \sigma_{\varepsilon}^{2}\right)
\end{aligned}
$$

2. Consider an indicator variable γ_{i} per SNP i, cis or trans as denoted by q

$$
\gamma_{i} \sim \operatorname{Bernoulli}\left(\pi_{q}\right) \text { such that } w_{i} \sim \begin{cases}N\left(0, \sigma_{\varepsilon}^{2} \sigma_{q}^{2}\right) & \text { if } \gamma_{i}=1 \\ 0 & \text { if } \gamma_{i}=0\end{cases}
$$

Allow respective "spike-and-slab" prior for effect sizes of cis and trans "eQTL".

Bayesian Genome-Wide TWAS (BGW-TWAS)

3. Estimate "eQTL" effect size \widehat{w}_{i} and Posterior Causal

Probability (PP), $\hat{\gamma}_{i}=E\left[\gamma_{i}\right]=\operatorname{Prob}\left(\gamma_{i}=1\right)$, by MCMC.
4. With GWAS data of additional test samples, predict

Genetically Regulated gene eXpression (GReX) by

$$
\begin{aligned}
\widehat{\operatorname{GReX}} g & =\sum_{i=1}^{m} \widehat{\gamma}_{i} \widehat{w}_{i} x_{i}^{*} \\
E\left[g\left(\mathbf{Y}_{\text {pheno }} \mid \mathbf{X}, \widehat{\mathbf{w}}, \widehat{\gamma}\right)\right] & =\beta \widehat{\operatorname{GReX}}_{g}=\beta\left(\sum_{i=1}^{m} \widehat{\gamma}_{i} \widehat{w}_{i} x_{i}^{*}\right)
\end{aligned}
$$

5. TWAS is to test $H_{0}: \beta=0$

Estimate w and $\mathbf{E}[\gamma]$

1. Employ EM-MCMC algorithm [Yang et al., AJHG 2017]
2. Use pre-calculated summary statistics from single variant model,
$T_{g}=\boldsymbol{x}_{i} w_{i}+\varepsilon$
3. Pre-calculate LD
correlation coefficients
4. Parallelize over segmented genome blocks

Segment and Prune Genome Blocks

- Genome-wide SNPs segmented into blocks with $\sim 3,000$ 10,000 variants based on block-wise LD structure
- Prune to genome blocks that:

■ have variants in cis

- have potential marginally significant (p -value $<10^{-5}$) variant by single variant tests
- up to 50 blocks, ranked by top significant p-values by single variant tests

Simulation Study Design

- Use real genotype data of 22,641 variants - 1,269 cis and 21,372 trans of 1,708 samples
- Simulate quantitative gene expression traits from selected true causal eQTL
- Apply BGW (BVSR), PrediXcan (Elastic-Net), and TIGAR (non-parametric Bayesian Dirichlet process regression) to train gene expression prediction models with 499 training samples
- Predict GReX values and conduct TWAS tests using 1,209 test samples

Simulation Study Design

- Consider the following scenarios:

■ 5 true causal eQTL and various proportions of cis variants, ($0 \%, 40 \%, 100 \%$)

- 22 true causal eQTL and various proportions of cis variants, (30\%,50\%,70\%)
- Various heritability for quantitative gene expression traits $h_{e}^{2}=(0.05,0.1,0.2,0.5)$
- Repeat simulation for 1,000 times to compare both prediction R^{2} and TWAS power

With 5 True Causal eQTL

With 22 True Causal eQTL

Method - BGW $~+~ B V S R$, cis only $=$ PrediXcan + TIGAR

Sum of $\widehat{\gamma}_{i}$

Simulation scenarios with $2 / 5$ and $11 / 22$ true cis-eQTL:

Gene Expression Heritability	Sum of Posterior Probabilities			
	Whole Genome	Cis- Region	Trans- Region	
5 True	0.05	0.79	0.46	0.33
	0.1	2.28	1.13	1.15
	0.2	3.72	1.44	2.28
	0.5	4.91	1.56	3.35
22 True	0.05	0.05	0.02	0.03
	0.1	0.21	0.11	0.10
	0.2	1.43	0.87	0.56
	0.5	6.46	3.89	2.57

Application Studies of Alzheimer's Dementia (AD) ROS/MAP

- Training data: 499 subjects with both genotype and transcriptomic data (14,156 genes)
- Test GWAS data of 2,093 individuals
- Considered phenotypes: AD clinical diagnosis, β-Amyloid, Tangles, Global AD pathology
- TWAS adjusted for covariates: Age at death, Sex, Smoking, ROS or MAP study, Education level, Top 3 genotype PCs

Mayo Clinic LOAD GWAS Data

- GWAS data of 2,099 individuals
- Considered phenotypes of AD clinical diagnosis
- TWAS adjusted for covariates: Age, Sex, Top 3 genotype PCs

BGW TWAS of AD Clinical Diagnosis

BGW TWAS of Global Pathology

B)

BGW TWAS of Global AD Pathology

BGW TWAS of Tangles

A)

BVSR Results for Gene ZC3H12B

A) BVSR Results of ZC 3 H 12 B

Top Five trans-eQTL for Gene ZC3H12B

Table 2. Trans-eQTL with top five PP>0.003 for gene ZC3H12B.

CHR	POS	rsID	Function	MAF	PP	\mathbf{w}	p-value
1	$159,135,282$	rs3026946	Intergenic	0.213	0.0147	-0.071	6.25×10^{-7}
19	$45,422,160$	rs12721051	3' UTR (APOC1)	0.161	0.0031	0.071	3.94×10^{-6}
19	$45,422,846$	rs56131196	Downstream (APOC1)	0.173	0.0048	0.069	1.75×10^{-6}
19	$45,422,946$	rs4420638	Downstream (APOC1)	0.173	0.0051	0.068	1.77×10^{-6}
19	$45,424,514$	rs157592	Regulatory Region (APOC1)	0.181	0.0056	0.075	1.43×10^{-6}

- rs12721051 was identified as a GWAS signal of total cholesterol levels
- rs4420638 is in LD with the APOE E4 allele (rs429358) and was identified to be a GWAS signal of blood lipids
- rs56131196 and rs157592 were identified as GWAS signals of AD and independent of APOE E4

Sum of $\widehat{\gamma}_{i}$ in real ROSMAP studies.

Train $\mathbf{R}^{\mathbf{2}}$	Sum of Posterior Inclusion Probabilities			Number of Genes
	Whole Genome	Cis-Region	TransRegion	
(0, 0.05)	6.63	0.60	6.23	1,504
(0.05, 0.1)	1.45	0.13	1.32	1,964
(0.1, 0.25)	2.00	0.17	1.83	6,617
(0.25, 0.5)	2.66	0.22	2.44	3,224
(0.5, 1)	3.04	0.31	2.73	474

TWAS using IGAP summary-level GWAS data of AD

GWAS summary statistics for studying AD by International Genomics of Alzheimer's Project (IGAP):

- Generated by meta-analysis of four consortia (~17K cases and $\sim 37 \mathrm{~K}$ controls; European)
- Alzheimer's Disease Genetic Consortium (ADGC)
- Cohorts for Heart and Ageing Research in Genomic Epidemiology (CHARGE) Consortium
■ European Alzheimer's Disease Initiative (EADI)
■ Genetic and Environmental Risk in Alzheimer's Disease (GERAD) Consortium
- Use S-PrediXcan burden test statistic, with variant weights derived by BGW, PrediXcan, and TIGAR.

BGW-TWAS considering both cis- and trans-eQTL

BGW using summary statistics

BGW-TWAS considering only cis-eQTL

BGW using summary statistics

PrediXcan considering only cis-eQTL

PrediXcan using summary statistics

Chromosome

TIGAR considering only cis-eQTL

TIGAR using summary statistics

Significant TWAS genes by BGW-TWAS

Gene	CHR	Position	TWAS P-VALUE			
			BGW-TWAS	BVSR ciseQTL	PrediXcan	TIGAR
GPX1 ${ }^{\text {a }}$	3	49,394,608	2.45×10^{-98}	2.45×10^{-98}	-	3.15×10^{-1}
FAM86DP	3	75,484,261	1.55×10^{-13}	4.81×10^{-1}	5.38×10^{-1}	9.63×10^{-1}
BTN3A2a	6	26,378,546	1.59×10^{-26}	1.56×10^{-26}	3.17×10^{-1}	5.04×10^{-1}
ZNF192 ${ }^{\text {a }}$	6	28,124,089	1.26×10^{-32}	1.25×10^{-32}	8.56×10^{-2}	2.07×10^{-1}
ALO22393.7a	6	28,144,452	3.25×10^{-178}	2.24×10^{-178}	1.50×10^{-1}	8.36×10^{-2}
HLA-DRB1 ${ }^{\text {ab }}$	6	32,557,625	1.02×10^{-12}	8.99×10^{-13}	2.06×10^{-6}	-
AEBP1	7	44,154,161	5.55×10^{-220}	8.62×10^{-1}	6.69×10^{-1}	4.19×10^{-1}
BUB3	10	124,924,886	6.64×10^{-18}	1.05×10^{-2}	-	4.76×10^{-1}
FBXO3	11	33,796,089	1.48×10^{-9}	6.88×10^{-1}	-	1.13×10^{-1}
CEACAM19abc	19	45,187,631	4.7×10^{-13}	2.54×10^{-13}	$\begin{aligned} & 3.60 \\ & \times 10^{-12} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.83 \\ & \times 10^{-16} \\ & \hline \end{aligned}$
APOC1 ${ }^{\text {a }}$	19	45,422,606	8.9×10^{-11}	1.11×10^{-10}	3.18×10^{-6}	7.2×10^{-3}
ZC3H12B	X	64,727,767	2.08×10^{-37}	-	-	-
CXorf56	X	118,699,397	6.02×10^{-07}	-	-	-

a. Genes that were also identified as significant by using BVSR cis-eQTL estimates.
b. Genes that were also identified by PrediXcan.
c. Genes that were also identified by TIGAR.

Summary

- Propose a novel BGW-TWAS tool for leveraging both cisand trans-eQTL in TWAS
- Computationally manageable with a computation cost of ~10 minutes per gene
- Gain power when there are true trans-eQTL signals
- Identified that the genetic effects of known GWAS signals (rs4420638, rs56131196, rs157592, near APOE E4 on Chr 19) could be mediated through the gene expression levels of ZC3H12B on Chr X which is significant for both AD and AD pathology Tangles

Publication

```
ARTICLE I VOLUME 107, ISSUE 4, P714-726, OCTOBER 01, 2020
Bayesian Genome-wide TWAS Method to Leverage both cis- and
trans-eQTL Information through Summary Statistics
Justin M. Luningham • Junyu Chen * Shizhen Tang ` ... David A. Bennett • Aron S. Buchman *
Jingjing Yang ٌ \square}\bullet\mathrm{ • Show all authors
Open Archive ` Published: September 21, 2020 ` DOI: https://doi.org/10.1016/.ajhg.2020.08.022 *
    Check for updates
```


BGW-TWAS Software:

https://github.com/yanglab-emory/BGW-TWAS.git

Acknowledgement

