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Hypothesis Testing

* Null Hypothesis and Alternative Hypothesis
* Two sample t-test: Hy: yuq = Uy, Hy: g4 # Uy
* Two-Way tables and Chi-Square Test:

* H,assumes that there is no association between the row and column variables (one
variable does not vary according to the other variable).

* H, claims that some association does exist.

* Test Statistic

* Two sample t-test with shared standard deviation o
;= H1 — H2

~ |1 1
o n + 5
* Two-Way tables and Chi-Square Test

<2 _ 2 (Observed — Expected)?

Expected
All Cells



Hypothesis Testing

* Derive the distribution of test statistic under Null hypothesis H,
 Calculate test statistic value with given data

* Obtain p-value based on test statistic distribution under H, and test
statistic value with given data



Chi-Square test

* Let O, denote the count in the it row and k" column in the
contingency table, and E, denote the corresponding expected count

e Test statistic

* If study sample size is large, the test statistic follows a chi-squared
distribution with degrees of freedom (I - 1)(K - 1) under H,, with |
rows and K columns in the contingency table.



Hypothesis Testing

* Obtain p-value based on test statistic distribution under H, and test
statistic value with given data

* Reject H, if p-value < significance level (0.05) or test statistic value
exceed the critical values based on significance level

* What does significance level mean?
* How to determine the critical values?
* What is p-value and how to calculate it?



Chi-square (y?) distribution

Critical value of X? chosen to attain desired a-level

Significance a-level
(area in blue) =
probability of making a
Type | error

Reject H_ Type | error?

Fail to Reject H_

0 Critical X° p-value?
¥> statistic



Critical Values of the Chi-square Distribution

df 0.995 0975 0.9
1 .000 .000 0.016
2 0.010 0.051 0.211
3 0.072 0.216 0.584
4 0.207 0.484 1.064
5 0.412 0.831 1.610
6 0.676 1.237 2.204

0.5
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0.025
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0.01
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Hardy-Weinberg Equilibrium (HWE)

* HWE law: Allele and genotype frequencies in a population will remain
constant from generation to generation in the absence of other
evolutionary influences

e Consider two alleles: A and a
* Allele frequency for Ais f(A) = p; allele frequency foraisf(a)=q=1-p

* The expected genotype frequencies under random mating are
* f(AA) = p? for the AA homozygotes
* f(aa) = g for the aa homozygotes
* f(Aa) = 2pq for the heterozygotes

* In the absence of selection, mutation, genetic drift, or other forces, allele
freqlﬁer&ues p and g are constant between generatlons SO equmbrlum IS
reache



HWE Test

* Consider the following contingency table for N = N4 + Ny, + Ny,
samples
*fA)=p=

ZNAA‘HVAa
2N

; fla)=q=1-—-p

I N

Observed
Count

Expected p2N 2pgN g*N
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Test HWE

* Pearson’s chi-square test:

2 2
¥2 — (0-E)?> _ (Naa—p°N)" | (Nag—2pqN)?  (Ngga—q®N)
o 2 o 2 T + 2

E p2N 2pqN q-N

 Under the null hypothesis (HWE), X? follows a chi-square distribution
with 1 degree of freedom

* The critical value for 0.05 significance level is 3.84



Test HWE

 Calculate the Pearson’s chi-square p-value for testing the HWE with
the following observation table

R R N

Observed 1009
Count

* Will you reject the null hypothesis (HWE)?
* What dose it mean if you reject the null hypothesis (HWE)?

12



Linkage Disequilibrium (LD)

* Definition in Population Genetics

* Linkage Disequilibrium (LD) is the non-random association of alleles at
different loci in a given population.

* Why nearby markers are likely to be correlated?

* The origin of LD?



Linkage Disequilibrium (LD)

* Consider the history of two neighboring single nucleotide
polymorphism (SNP)

* SNPs exist today arose through ancient mutation events...

Before Mutation

ACGTAAGTACGTACGTGTACGACG

After Mutation

T Mutation C G T G T

14



Linkage Disequilibrium (LD)

e One SNP arose first and then the other ...

Before Mutation
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Linkage Disequilibrium (LD)

 Recombination generates new arrangements for the ancestral alleles

Before Recombination

A G
e —

C G
] ki iLhMkib}

C C

After Recombination

A G

C G

C C
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Linkage Disequilibrium (LD)

* Chromosomes are mosaics

Ancestor

* Extent and conservation of mosaic pieces depends on
 Recombination rate Present.day

* Mutation rate
* Population size
 Natural selection

* Combinations of alleles at very close markers reflect ancestral haplotypes

17



Quantify Linkage Disequilibrium (LD)

* LD is defined as the difference between the observed frequency of a particular
combination of alleles at two loci and the frequency expected for random

association.
* Allele frequency Locus B
e P,P,,P4,+P, =1 B b
* PBinJPB +Pb =1
¢ PAB = PAPB Locus A A pAB px‘lb
if and only if alleles A, B are independent a p.s P

* Minor Allele Frequency (MAF)
Totals Pz D»

Totals

P4
p(l

1.0



Linkage Equilibrium
Expected for Distant Loci

Pap = P iP5

P =PiPy = Ps(1-pp)

P =P.Ps=U=-p)ps

P =DPul» =U—=p )= pg)



Linkage Disequilibrium
Expected for Nearby Loci

Pip * PP

Pay % Paly=P(1=P3)

P PPy =U=p)ps

Pa Z PPy =1—p )= pp)



Disequilibrium Coefficient D,q

D,y =Pz —DPiDp
Pup =DPuPp+Dyp
Puy =DPaPy— D yp
Pup = PsPp—Dp
Pap = PaPs+ D g



D,z is hard to interpret

* Sign is arbitrary ...
* A common convention is to set...

* A, B as the common alleles
* a, b as the rare allele

* Range depends on allele frequencies
* Hard to compare between markers

* Can you see why the range of D,, depends on allele frequencies?
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Boundaries for D,,

@ By using the fact that pag = P(AB) must be less than both
pa = P(A) and pg = P(B), and that allele frequencies cannot
be negative, the following relations can be obtained:

0 < pa = paps + Dag < pa, P8
0 < pa = pape — DaB < pa, PB
0 < pab = papp — Dag < pa, po
0 < pab = Papb + Da < pa, Py

@ These inequalities lead to bounds for Djp :

e 6 6 ¢

—PAPB, —PaPb < Dag < papB, PAPS
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Normalized Linkage Disequilibrium Coefficient

@ The possible values of D depend on allele frequencies. This
makes D difficult to interpret. For reporting purposes, the
normalized linkage disequilibrium coefficient D’ is often used.

¢ B .
Dl — max(—papPB,—PaPb) if DAB <0 (1)
A Das if Dag > 0
. min(papB,PAPb) AB

24



Estimate D,

@ Suppose we have the N haplotypes for two loci on a
chromosomes that have been sampled from a population of
interest. The data might be arranged in a table such as:

B b Total
A | nap nap | na
d naB Nap n,
ng Np N

@ We would like to estimate Dag from the data. The maximum
likelihood estimate of Djg is

Das = paB — PAPB
where pap = 4B, pa = ¢, and pg = &
@ So the population frequencies are estimated by the sample
frequencies



Measuring LD with r?

e Define a random variable X, to be the number of allele A present at the first
marker, 0, 1,2

e Define a random variable X to be the number of allele B present at the second
marker, 0, 1,2

e Correlation between these two random variabless is given by
Cov(Xy4, Xp) Dyp

 VarGanVarXs)  /pall - paps(l - py)

V'AB

e 1’ between these two random variables is given by
2
, Dy p

v —
AB = pa(1 = pa)ps(1 — pp)
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Properties for r?

* Ranges between 0 and 1
* 1 means two markers provide identical information, referred to as Perfect LD
* 0 means two markers are in Perfect Equilibrium

 Raw r? from CHR22

Physloal Dictanoes (kb)

Dawson et al, Nature, 2002
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Linkage Disequilibrium in Three Regions

2q13  13q13 | 14q11

(63 markers) (38 markers) (26 markers)

Abecasis et al, Am J Hum Genet, 2001
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What is Association Studies?

 Test associations between markers/SNPs/genes and the trait of
Interest

* Population Data

* Contingency table tests (dichotomous trait, e.g., case/control)
* Regression model based tests

* Family Data
* Parametric Linkage Analysis



Why LD is Important for Association Studies?

* SNPs in strong LD with disease variant are good proxies for disease
variant

Indireet Dlsease
3550“3“0" """" * [phenotype
Direct Direct
association assoclation
Haplotype Balding, 2006
Typed merker locus Unobserved causal locus

* If testing (unobservable) disease variant for association would yield chi-
squared statistic X2, testing variant in LD yields r?X?

* Model LD in association studies based on a joint multivariate model to
improve power for fine-mapping causal variants (Read Schaid et. al. Nat.
Rev. 2018 paper)
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Association Studies

* Population-based vs. family-based

* Phenotype(s) of interest

* Dichotomous trait, e.g., case/control

 Quantitative trait

* Number of markers tested
* May range from 1 to >10 million!

e Candidate gene study (often appear as replication study)

 Genome-wide association study (GWAS)



Dichotomous Traits

* Compare frequencies of particular alleles, or genotypes, in set of
cases and controls
e Chi-square test using contingency tables

* Logistic regression model based test



Chi-Square genotype test using contingency tables

* Test whether the trait and genotype are independent

* For example, we observe

Control

Case N4o N4q Nyo

* |s the observation is significantly different from what we would expect if trait and the
genotype are independent?

* Hy: No association between the trait and the genotype, i.e., sample with genotype
AA, Aa, or aa have the same probability to develop disease (to be a Case)

33



Recall Chi-square test

* Let O, denote the count in the it row and k" column in the
contingency table, and E, denote the corresponding expected count

e Test statistic

* If study sample size is large, the test statistic follows a chi-squared
distribution with degrees of freedom (I - 1)(K - 1) under H,, with |
rows and K columns in the contingency table.



How to Calculate E;, 7

 For example, we observe

. AA |  Aa | aa | RowTotal
Noo No1 No2 Nop.

Control
Case N4o Nqq N4> Ny,
Column Total ng n n, n

* Observed number of samples per cell: O, = n, ; with disease status (D) i =0, 1;
genotype (G) k=0, 1, 2

* Expected number of samples per cell: E, =n;n,/n, under independence of
disease status and genotype, npp-ipg=«x = n(n;./n)(n ,/n)

 Population genotype frequency: paa =N o/N; Pag=N1/N; Paa=n,/N

* Expected number of samples per cell: E;g=n;, paa; E1=N; Pas; En=N; Pas;

35



Example of Genotypic Association Test

e TCF7L2 for Type 2 Diabetes in Finns
e SNP rs12255372 has alleles T and G

GG GT TT Total
Case 661 255 20| 936
X = Oy — Ei)*/Ey; Control| 724 354 50 1128

551 2012 Total | 1385 609 70 |2064

Xz = (661 — 628.08)*/628.08 + ... ~ 14.08 ~ x* df =2

p = .0009



Contingency Tables under Dominant (risk allele A)
or Recessive (risk allele a) Disease Model

Control Ngo +No1
Case N1g tN1qq Nqo N,
Column Total Ng+nN 4 n, n

* Hy: No association between the trait (to be a Case or Control) and the
genotype being AA/Aa or aa
e Chi-square test statistic:

Xo= Z Z(Oij_Eij)z/Eij = o sdif =i

i=0,1 j=0,1

37



Example for Testing Dominant or Recessive

Disease Model
e TCF7L2 for Type 2 Diabetes in Finns

e SNP rs12255372 has alleles T and G

e Allele T is dominantto G

i—EyY’[Ey ~ x° df=1

GG GT+TT | Total

Case @ 661 255+20=275 936
Control | 724 354+50=404 1128
Total 1385 609+70=679 2064

X3~2960 ~ )’ df=1

p =.0019




Contingency Table for Allelic Association Test
—-—

Control Noa=2Noo*No; Noa=No1+2Ng,
Case Ny A=2N45+N 44 N,=N+2N4, 2n,
Column Total N A=2N,+nN 4 n_,=n,+2n, 2n

e Assume additive disease model
* Assume HWE

* Hy: No association between the trait (sample to be a Case or Control)
and the number of allele A in the sample genotype

X = Z Z(Oij_Eij)z/Eij s 04 AP

i=0,1 j=0,1

39



Example of Allelic Association Test
e TCF7L2 for Type 2 Diabetes in Finns
e SNP rs12255372 has alleles T and G

G T | Total
Case |1577 295|1872
Control | 1802 454 | 2256
Total |3379 7494128

X2~13.13 ~ x4 df=1

p = .0003

40



Measure of Association Strength: Odds Ratio

Exposed (E) Not Exposed (E)
Case (D) a b
Control (D) C d

Odds ratio:
P(D\E)/P(D|E)
P(D|E)/P(D|E)

P(E|D)/P(E|D)
P(E|D)/P(E|D)
= ad/bc

— Exposed = carry certain genotype
— Counts pertain to individuals, not alleles.



Odds Ratio

Genotype Model (E=aa)

AA Aa aa

Case
Control

Mo N1 A12

Moo Mo1 o2

Dominant Model (E=aa)

AA or Aa aa

Case
Control

Mg+ Ny Ao

Moo + N1 Ao

Allele Model (E=a)

A a

Case
Control

2”10 + Ny Ny + 2!‘112
2n0 + Ng1 N1 + 2N

ORper = (ny1002)/(no1n12)
ORpom = (N10n02)/ (Noon12)

ORp = [(nyo + ny1)nezal/[(ngo + nop)nys]

OR; = [(2nyo + nyp)(ne1 + 2nep)1/1(2nge +
no1)(ny1 + 2ny2)]
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Logistic Regression Model

— Y = dichotomous phenotype
— X = a coding for the genotype

Genotype | Codominant Dominant Recessive Additive
AA | x=0,1DT Xx=1 X=1 X=2
Aa X=(1,00T Xx=1 X=0 X=1
aa X=(0.0" X=0 X =10 X =0

Assume a logistic regression model:
o [Pr(Y = 1|1X)
Pr(Y = 0|X)
where [ is the intercept, a is the coefficient for covariates C, and ; is the genetic
effect-size (i.e., log(Odds-Ratio) ).

]ZIB()+CL’C+,31X

HO:,B1:0

HaZB1¢0



Test Statistic

: .7 = B -
Wald Test: Z = Standard Error(8) N (0, 1) under H,
—~2
. w2 _ P . _
Chi-square Test: X Var (5 Chi_Square with df=1 under H,

* How to obtain p-value?



Advantages of Logistic Regression Model

* Account for confounding covariates (C), e.g., age, gender, BMI,
smoking

* Flexible for various genetic models
* Flexible for testing multiple markers in the same model (modeling LD)

* Equivalent to the corresponding Chi-square test using contingency
tables, if not modeling covariates

* Allow gene-environment interactions
* Without the assumption of HWE



Quantitative Trait

* Linear regression model
Y =By+aC + ;X +¢€ e~N(0,0%)
* Y represents the quantitative trait values
* X represents the genotype data (0, 1, 2) for additive genetic model
* ( represents the confounding covariates or other environmental variables
* € represents the error term, other unknown factors

.HO:E]_ =0 ;Ha:ﬁl #* 0
* P-values can be obtained by Wald Test



Linear Regression Model

Phenotype

(@)

(g

NN

w

N

p—

o

[§‘. = cor (Genotypegy,, Phenotype)
] :
E 8
o @ @
______ - ’
2. .
—Q -..
: " !
0 1 2

Genotype
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Genome-wide Association Study (GWAS)

GWAS: independent single-variant tests across all genome-wide variants

e Quality control (QC) of the study dataset

e Choose a model/test for the phenotype of interest (e.g., linear regression model
for quantitative traits, logistic regression model for dichotomous traits, other
association tests from previous lecture)

e Significance level @ = 5 x 1078

e Report nearby genes of significant SNPs

48



Genotype Quality

Data quality is one of the key factors affecting the validity of findings.

Example factors affecting genotype quality:

e Quality of DNA samples, depending on the sample source (e.g., blood, buccal
swab, spit Kit)

e Handling and storage of the sample (e.g., sample contamination)
e Genotyping platforms/chips
e Sequence errors

e Variant calling

49



Quality Control

e Filter SNPs

— Marker genotyping missing rate (e.g., > 2%)

— Mapping quality for sequence data (based on mapping quality scores)

— Hardy-Weinberg Equilibrium (HWE) Testing (e.g., p-value < 1079)

— MAF (e.g., < 5%)

— Control sample reproducibility

— Mendelian Errors (e.g., > 1% families, or > 5 errors) for family-based studies

e Filter samples

— Sex inconsistencies and chromosomal anomalies

— Relatedness for population-based studies (how to quantify relatedness given
genotype data?)

— Ethnicity
— Sample genotyping efficiency/call rate (e.g., < 98%)

50



Additional Factors for GWAS: Batch effects, Population Stratification

( pre-QC dataset j

Y

sample
quality

inconsistencies

check

Y Y

sample population
relatedness

stratification ’
|

Y save
eigenvectors

sample Sel o
or

analysis

genotyping
call rate

remove

poor-quality

 /
batch effect
analysis

l

\

marker
quality

average call rate marker
and MAP genotyping
call rate
\/ Y Y
exclude duplicate
SNPS concordance

one plate vs. all

others GWAS-look
at number of
S|gn|f|cant hits

ompute genomic
control A if
necessary

samples

> [ post-QC dataset] -

minor allele
frequency

Hardy-Weinberg
equilibrium
-

remove
poor-quality
SNPs

Figure 1.19.1

data.

Aflowchart overview of the entire GWAS QC process. Each topic is discussed in detail in the corresponding
section in the text. Squares represent steps, ovals represent input or output data, and trapezoids represent filtering of




Check GWAS Results by Quantile-Quantile (QQ) Plot

— Obtained — log 10(p-values) from GWAS
— Sort all —log 10(p-values) from most significant to least
— Pair these with the expected values of order statistics of a Uniform(0, 1)

distribution
— Under NULL hypothesis (no association), p-values follow a Uniform(0, 1)
distribution
With inflated type | error Without inflated type | error
) ) .
35 W0 5 W0
© ‘ ©
> ." >
Cll < y Cll < -
e ©
2 - 2 -
O O
8 1 8 1
= =
S . S _
IS D
O O
_l e I I T I T T _l = I I T I | I
o 1 2 3 4 5 0 1 2 3 4 5

—log10(expected p—value) —log10(expected p—value)
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Visualize GWAS Results by Manhattan Plot

— Scatter plot of —log 10(p-values) across all genome-wide variants
— Visualize signal peaks
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GWAS Results
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Visualize GWAS Loci by Locus Zoom Plot

— Zoom into the peak region with gene annotations

— Visualize r* between the specified significant (purple diamond) signal and its

neighbor SNPs

— Visualize recombination rate
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GWAS Catalogue Results

2019 July

>157K Associations
from 4220 Publications

@ www.ebi.ac.uk/gwas
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Example GWAS Discoveries

12500 . . . Alzheimer disease and age of onset
} g!sease Ok Ira!: ; Glomerular filtration rate (creatinine)
isease or Trai
Disease or Trait 3 | [Menarche (age at onset) r—
e Blood metabolite levels
- Height
/ \ \ Height: Number of Significant ) N S
10000 g / \ ' | SNPs for the trait or disease :lRed blood cell traits N 5
i Qi humberof Significant g S 3 o /Inflammatory bowel disease /' , i/
: || SNPs in this year ||| Width: Fraction of publications 5 i 3 g\ )
3 \ / |/ | for the trait or disease JBO“E mineral density E 1
" > M eeliac di L Y
S |__|Celiac disease N R
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o 7500 [Fartinterval | |Height . /
= Bl Lo cholesterol Hupid metabolism phenotypes .- S
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ICrohn's disease | R 2 _ |HDL cholesterol
V 2 \ / u S |Breast cancer
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Before 2008 2008 2009 2010 2011 2012 2013 2014 2015 Till 09/2016
Time

Figure 2. GWAS SNP-Trait Discovery Timeline

Data used for generating the graph were taken from the GWAS Catalogue.'” SNPs and traits were selected according to the following
filters. SNPs were selected with a p value < 5 x 107®. For each trait with two or more selected SNPs, SNPs were removed if they had
an LD r* > 0.5 (calculated from 1000 Genomes phase 3 data) with another selected SNPs and their p value was larger. For each year

of discovery, only the top three traits and diseases with the largest number of SNPs are labeled in the circle.

Visscher P.M.
et al. AJHG
2017.
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Example links between GWAS discoveries and

drug developments

GWAS hits Gene
‘.‘....?ﬁ.-.‘*:’.nn-' E ,
: \{_
Trait Gene with GWAS hits Known or candidate drug

Type 2 Diabetes
Rheumatoid Arthritis

Ankylosing
Spondylitis(AS)

Psoriasis(Ps)
Osteoporosis
Schizophrenia
LDL cholesterol
AS, Ps, Psoriatic Arthritis

SLC30A8/KCNJ11
PADI4/IL6R

TNFR1/PTGER4/TYK2

IL23A
RANKL/ESR1
DRD2
HMGCR
IL12B

ZnT-8 antagonists/Glyburide
BB-Cl-amidine/Tocilizumab

TNF-
inhibitors/NSAIDs/fostamatinib

Risankizumab

Denosumab/Raloxifene and HRT

An . Visscher P.M.
nti-psychotics
Pravastatin et al. AJHG
2017.

Ustekinumab
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LocusZoom Visualization of GWAS of BMI ,
Women only
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LocusZoom Visualization of GWAS of BM|

BMI meta-analysis, women only
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GWAS Tools

e GWAS Tool

e PLINK: https://www.cog-genomics.org/plink/
e EPACTS: https://genome.sph.umich.edu/wiki/EPACTS

 GWAS Results Visualization and Manhattan/LocusZoom Plot Tool
e https://my.locuszoom.org/
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Next Lecture

* Homework Assignment

* Read provided paper “From genome-wide associations to candidate causal
variants by statistical fine-mapping”, Schaid D.J., Chen W., and Larson N.B.
(2018), Nature Reviews Genetics.

* Answer given questions in your own words

* Written answers (no more than 3 pages, hard copy) are due at the end of next
lecture

* Topics for Next Lecture
* Population Stratification
* Meta-analysis
* Family-based Association Test
* Discuss homework questions



