ANOVA

ANalysis Of VAriance

Introduction to ANOVA

10/21/2022 (Week 9)

Jingjing Yang, PhD
Assistant Professor of Human Genetics

ANOVA

One-way ANOVA

Outline

Connection with Regression

Two-way ANOVA

- Regression emphasizes overall weight of an independent variable predictively
- Prediction
- Test

Regression or ANOVA/ttests?

- ANOVA/t-tests emphasize "statistical significance" after experiment
- Test mean differences of a continuous variable between two groups: Two sample t-test
- Test differences of a continuous variable among multiple groups: Analysis of Variance (ANOVA)

Categorical variables

Study how a variable would change according to different factors/levels of a categorical variables (e.g., group variable)

Especially when the categorical variable has factors/levels >2

Factor data type in R

For example, sex variable in the abalones dataset contains values for M, F, and I

Let A, B \& C be 3 levels of one factor: do any differ from the others?
If we do multiple pair-wise Two-sample t-test

$$
\begin{gathered}
H_{0}: \mu_{A}=\mu_{B} \\
\alpha=5 \%
\end{gathered}
$$

$$
\begin{aligned}
& H_{0}: \mu_{A}=\mu_{C} \\
& \alpha=5 \%
\end{aligned}
$$

$$
\begin{gathered}
H_{0}: \mu_{B}=\mu_{C} \\
\alpha=5 \%
\end{gathered}
$$

Why Multiple Testing Matters

- In general, if we perform m hypothesis tests, what is the probability of at least 1 false positive?
$P($ Making an error $)=\alpha$
$P($ Not making an error $)=1-\alpha$
$P($ Not making an error in m tests $)=(1-\alpha)^{m}$
$P($ Making at least 1 error in m tests $)=1-(1-\alpha)^{m}$

3 Hypothesis tests
Family-wise type1 error: $14.2 \%=1-(1-0.05)^{\wedge} 3$
(Week 12 Lecture about Multiple Testing)

One-way ANOVA

$$
H_{0}: \mu_{A}=\mu_{B}=\mu_{C}
$$

H_{a} : At least one of the means is different

1 Hypothesis test
Family-wise type1 error : 5\%

1 question for one factor

One-way ANOVA

- Is factorA associated with a response?

3 questions for two factors

Two-way ANOVA

- Is factorA associated with a response?
factorBlevel1
level2
- Is factorB associated with a response?
- Is the interaction between factorA and factorB associated with a response?

7 questions for three factors

Three-way ANOVA

- Is factorA associated with a response?
- Is factorB associated with a response?
- Is factorC associated with a response?
- Is the interaction between factorA and factorB associated with a response?
- Is the interaction between factorA and factorC associated with a response?
- Is the interaction between factorB and factorC associated with a response?
- Is the interaction among factorA, factor B, and factorC associated with a response?

One-way ANOVA

One-way ANOVA

- Hypothesis
- $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{k}$
- H_{a} : At least one of the means is different
- Assumptions
- Sample independence
- Normality of the continuous variable per group
- Homogeneity of variances (aka, Homoscedasticity): assuming the residuals all have the same variance

Homoscedasticity vs. Heteroscedasticity

Homoscedasticity

Rational of ANOVA

- Partition total data variation into two sources
- Between levels/groups (model, regression model)
- Within levels/groups (residuals, error)
- If $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{k}$ is true, the standardized variances (between group vs. within group) are equal to one another
- F test statistic

Grand mean and total deviation

$$
\begin{gathered}
\bar{Y}_{\text {grand }}=\frac{\sum y_{i j}}{N} \\
\uparrow \text { deviate }=y_{i j}-\bar{Y}_{\text {grand }}
\end{gathered}
$$

$$
\begin{aligned}
\sum\left(y_{i j}-\bar{Y}_{\text {grand }}\right)^{2} & =\text { Sum of Squares Total } & & s^{2}=\text { variance }=M S_{\text {total }}=\frac{S S T}{d f_{\text {total }}} \\
& =S S T & & \mathrm{df}_{\text {totala }}=\mathrm{N}-1
\end{aligned}
$$

Partitioning Total Variation

- Variation is simply average Squared Deviations from the Mean

$$
\begin{gathered}
\boldsymbol{S S T}=S S T_{\text {group }}+S S E_{\text {residual }} \\
\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\boldsymbol{y}_{i j}-\overline{\boldsymbol{Y}}\right)^{2}=\sum_{j=1}^{K} n_{j}\left(\overline{y_{j}}-\bar{Y}\right)^{2}+\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(y_{i j}-\bar{y}_{j}\right)^{2}
\end{gathered}
$$

Sum of squared deviations from the grand mean across all N observations
$N=n_{1}+n_{2}+\cdots+n_{K}$

Sum of squared
deviations for each group mean from the grand mean

Sum of squared
deviations for all observations from each group mean across all K groups

Group means: explains model \& residual deviation

$$
\bar{Y}_{\text {grand }}=\frac{\sum y_{i j}}{N}
$$

Level A

Level B

Level C

$$
M S_{\text {group }}=\frac{S S T_{\text {group }}}{d f_{\text {group }}}
$$

$$
M S E_{\text {residual }}=\frac{S S E_{\text {residual }}}{d f_{\text {residual }}}
$$

$$
\mathrm{F}_{K-1, N-K} \sim
$$

$$
\sum()^{2} / d f_{g}=\mathrm{MS}_{\text {group }}
$$

$$
\sum()^{2} / d f_{r}=\mathrm{MSE}_{\text {residual }}
$$

$$
d f_{g}=K-1, \quad d f_{r}=N-K
$$

ANOVA F-test

$$
F_{d f 1, d f 2}=\frac{\text { model or group variance }}{\text { residual variance }}=\frac{M S_{d f g, \text { effect }}}{M S E_{d f r}}
$$

Follows an F-distribution under the NULL hypothesis.

- Null distributions of $F(3,100)$
- One-sided critical values of $F(3,100)$

$$
\begin{aligned}
& \mathrm{qf}(0.95, \mathrm{df} 1=3, \mathrm{df} 2=100) \\
& 2.696
\end{aligned}
$$

- If our test F is as or more extreme than the critical value, we reject the null hypothesis.

When the factor is associated with the response:

$$
\mathrm{F}_{K,(N-(K+1))} \sim \frac{\sum(\uparrow)^{2} / d f_{g}=\mathrm{MS}_{\text {group }}}{\sum(\uparrow-\hat{r}}
$$

is expected to be greater than the corresponding critical value.

Statistical Analysis of an ANOVA design is usually a two-step process

- Step 1: F Test of the omnibus null

$$
H_{o}: \sigma_{\text {model }}^{2} \leq \sigma_{\text {residual }}^{2}
$$

- Step 2: Multiple post hoc comparisons of group means

$$
H_{o}: \mu_{\mathrm{A}} \leq \mu_{\mathrm{B}} \leq \mu_{\mathrm{C}} \ldots ., \leq \mu_{\mathrm{k}}
$$

ANOVA Table

Source of Variation	df	Sum of Squares	MS	F
Group	$\mathrm{k}-1$	SST $_{\mathrm{G}}$	$\frac{S S T_{G}}{k-1}$	$\frac{\frac{S S T_{G}}{k-1} / \frac{S S T_{E}}{N-k}}{}$ Error
N-k	$\mathrm{SST}_{\mathrm{E}}$	$\frac{S S T_{E}}{N-k}$		
Total	$\mathrm{N}-1$	SST		

$$
\begin{aligned}
& \mathrm{SST}_{\mathrm{G}}=\mathrm{SST}_{\text {group }} \\
& \mathrm{SST}_{\mathrm{E}}=\mathrm{SSE}_{\text {residual }}
\end{aligned}
$$

$\eta^{2}=\frac{S S T_{G}}{S S T_{\text {Total }}}$, "ges" generalized eta square in results by ezANOVA()
Equivalent to regression $R^{2}=\frac{S S R}{S S T_{\text {Total }}}=1-\frac{S S E_{\text {residual }}}{S S T_{\text {Total }}}$

Example dataset: a quantitative trait X was measured, and a single SNP was genotyped

Our Data:

$$
\begin{array}{lll}
\text { AA: } & 82,83,97 & \bar{x}_{1 .}=(82+83+97) / 3=87.3 \\
\text { AG: } & 83,78,68 & \bar{x}_{2 .}=(83+78+68) / 3=76.3 \\
\text { GG: } & 38,59,55 & \bar{x}_{3 .}=(38+59+55) / 3=50.6
\end{array}
$$

- Let X_{ij} denote the data from the $\mathrm{i}^{\text {th }}$ level and $\mathrm{j}^{\text {th }}$ observation
- Overall, or grand mean, is:

$$
\begin{gathered}
\bar{x}_{. .}=\sum_{i=1}^{K} \sum_{j=1}^{J} \frac{x_{i j}}{N} \\
\bar{x}_{. .}=\frac{82+83+97+83+78+68+38+59+55}{9}=71.4
\end{gathered}
$$

(X is the continuous response variable Y in the previous slide)

Partitioning Total Variation

- $\mathrm{SST}_{\mathrm{G}}=\mathrm{SST}_{\text {group }}$
- $\mathrm{SST}_{\mathrm{E}}=\mathrm{SSE}_{\text {residual }}$

$$
\begin{array}{ll}
(82-71.4)^{2}+(83-71.4)^{2}+(97-71.4)^{2}+ & 3 \cdot(87.3-71.4)^{2}+ \\
(83-71.4)^{2}+(78-71.4)^{2}+(68-71.4)^{2}+ & 3 \cdot(76.3-71.4)^{2}+ \\
(38-71.4)^{2}+(59-71.4)^{2}+(55-71.4)^{2}= & 3 \cdot(50.6-71.4)^{2}=
\end{array}
$$

$$
(82-87.3)^{2}+(83-87.3)^{2}+(97-87.3)^{2}+
$$

$$
(83-76.3)^{2}+(78-76.3)^{2}+(68-76.3)^{2}+
$$

$$
(38-50.6)^{2}+(59-50.6)^{2}+(55-50.6)^{2}=
$$

2630.2

2124.2

Partitioning

 Total Variation- $\mathrm{SST}_{\mathrm{G}}=\mathrm{SST}_{\text {group }}$
- $\mathrm{SST}_{\mathrm{E}}=\mathrm{SSE}_{\text {residual }}$
$\mathrm{SST}=\mathrm{SST}_{\mathrm{G}}+\mathrm{SST}_{\mathrm{E}}$ $\sum_{i=1}^{K} \sum_{j=1}^{J}\left(x_{i j}-\bar{x}\right)^{2} \quad \sum_{i=1}^{K} n_{i} \bullet\left(\bar{x}_{i .}-\bar{x}\right)^{2} \quad \sum_{i=1}^{K} \sum_{j=1}^{J}\left(x_{i j}-\bar{x}_{i}\right)^{2}$

Calculating Mean Squares

- To make the sum of squares comparable, we divide each one by their associated degrees of freedom
- $\mathrm{SST}_{\mathrm{G}}=\mathrm{k}-1$ (3-1=2)
- $\mathrm{SST}_{\mathrm{E}}=\mathrm{N}-\mathrm{k}(9-3=6)$
- $\mathrm{SST}_{\mathrm{T}}=\mathrm{N}-1(9-1=8)$
$\mathrm{MST}_{\mathrm{G}}=\mathrm{MS}_{\text {group }}$
$\mathrm{MST}_{\mathrm{E}}=\mathrm{MSE}_{\text {residual }}$
- MST $_{G}=2$ I24.2 $/ 2=1062.1$
- $\mathrm{MST}_{\mathrm{E}}=506 / 6=84.3$

Almost There... Calculating F Statistic

- The test statistic is the ratio of group and error mean squares

$$
F=\frac{M S T_{G}}{M S T_{E}}=\frac{1062.2}{84.3}=12.59
$$

- If H_{0} is true $\mathrm{MST}_{\mathrm{G}}$ and $\mathrm{MST}_{\mathrm{E}}$ are equal
- Critical value for rejection region is $\mathrm{F}_{\alpha, k-1, N-k}$
- If we define $\alpha=0.05$, then $F_{0.05,2,6}=5.14$

How to do ANOVA analysis in R?

- Base R function : aov()
- R function: ezANOVA() from R library "ez"

One-way ANOVA by aov() with Completely Randomized Samples

> aov_2 <- $\operatorname{aov}(X \sim S N P$, data $=$ example_dt1)
$>$ summary(aov_2)
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{lllllll}\text { SNP } & 2 & 2124 & 1062.1 & 12.59 & 0.00712 \text { ** }\end{array}$
Residuals $6 \quad 506 \quad 84.3$

Signif. codes: 0 '***’ 0.001 ‘**' 0.01 '*' 0.05 '.' 0.1 ' 1

```
> aov_1 <- ezANOVA(data = example_dt1, dv = X, wid = SampleID,
+ between = SNP, detailed = TRUE, return_aov = TRUE)
> print(aov_1)
$ANOVA
    Effect DFn DFd SSn SSd F p p<.05 ges
1 SNP 2 6 2124.222 506 12.5942 0.007119905 * 0.8076208
$`Levene's Test for Homogeneity of Variance
    DFn DFd SSn SSd F p p<.05
1 2 6 8 330 0.07272727 0.9306614
$aov
Call:
    aov(formula = formula(aov_formula), data = data)
Terms:
                    SNP Residuals
Sum of Squares 2124.222 506.000
Deg. of Freedom 2
Residual standard error: 9.183318
Estimated effects may be unbalanced
```


Connection with Linear Regression

Predicted and Residual Values

- Predicted, or fitted, values are values of y predicted by the leastsquares regression line obtained by plugging in $x_{1}, x_{2}, \ldots, x_{n}$ into the estimated regression line

$$
\begin{aligned}
& \hat{y}_{1}=\hat{\beta}_{0}-\hat{\beta}_{1} x_{1} \\
& \hat{y}_{2}=\hat{\beta}_{0}-\hat{\beta}_{1} x_{2}
\end{aligned}
$$

- Residuals are the deviations of observed and predicted values

$$
\begin{aligned}
& e_{1}=y_{1}-\hat{y}_{1} \\
& e_{2}=y_{2}-\hat{y}_{2}
\end{aligned}
$$

Residuals Are Usefu!!

- They allow us to calculate the error sum of squares (SSE):

$$
S S E=\sum_{i=1}^{n}\left(e_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

- Which in turn allows us to estimate σ^{2} :

$$
\hat{\sigma}^{2}=\frac{S S E}{n-2} \quad \mathrm{n} \text { is Sample Size }
$$

- As well as an important statistic referred to as the coefficient of determination:

$$
r^{2}=1-\frac{S S E}{S S T} \quad S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

Aka. Regression R^{2}

Multivariate Linear Regression

- Linear regression model to two or more independent/predi ctor variables
- $Y=$
$\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}$
$+\cdots+\beta_{k} X_{k}+\epsilon$

Hypothesis Testing: Model Utility Test (or Omnibus Test)

- The first thing we want to know after fitting a model is whether any of the independent variables (X 's) are significantly related to the dependent variable (Y) :

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{k}=0 \\
& \mathrm{H}_{\mathrm{A}}: \text { At least one } \beta_{1} \neq 0 \\
& f=\frac{R^{2}}{\left(1-R^{2}\right)} \cdot \frac{k}{n-(k+1)} \quad \mathrm{n} \text { is Sample Size }
\end{aligned}
$$

Rejection Region: $F_{\alpha, k, n-(k+1)}$

Equivalent ANOVA Formulation of Omnibus Test

- We can also frame this in our now familiar ANOVA framework
- partition total variation into two components: SSE (unexplained variation) and SSR (variation explained by linear model)

Source of Variation	df	Sum of Squares	MS	F
Regression	k	$S S R=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}$	$\frac{S S R}{k}$	$\frac{M S_{R}}{M S_{E}}$
Error	$\mathrm{n}-2$	$S S E=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$	$\frac{S S E}{n-2}$	
Total	$\mathrm{n}-1$	$S S T=\sum\left(y_{i}-\bar{y}\right)^{2}$		

[^0]Rejection Region : $F_{\alpha, k, n-(k+1)}$

F Test For Subsets of Independent Variables

- A powerful tool in multiple regression analyses is the ability to compare two models
- For instance say we want to compare:

$$
\begin{aligned}
\text { Full Model: } y & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+\varepsilon \\
\text { Reduced Model: } y & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon
\end{aligned}
$$

- Again, another example of ANOVA:
$\mathrm{SSE}_{\mathrm{R}}=$ error sum of squares for reduced model with l predictors

$$
f=\frac{\left(S S E_{R}-S S E_{F}\right) /(k-l)}{S S E_{F} /([n-(k+1)]}
$$

$\mathrm{SSE}_{\mathrm{F}}=$ error sum of squares for full model with k predictors

Example of Model Comparison

- We have a quantitative trait and want to test the effects at two markers, M1 and M2.

$$
\text { Full Model: Trait }=\text { Mean }+M 1+M 2+(M 1 * M 2)+\text { error }
$$

Reduced Model: Trait $=$ Mean $+M 1+M 2+$ error

$$
f=\frac{\left(S S E_{R}-S S E_{F}\right) /(3-2)}{S S E_{F} /[[100-(3+1)]}=\frac{\left(S S E_{R}-S S E_{F}\right)}{S S E_{F} / 96}
$$

Rejection Region: $F_{a, 1,96}$

Model 1. Rings/Age ~ factor(sex) + length + diameter + height + wholeWeight + shuckedWeight + visceraWeight + shellWeight + diameter * height
vs.
Model 2. Rings/Age \sim factor(sex) + length + diameter + height + wholeWeight + shuckedWeight + visceraWeight + shellWeight

Abalones Dataset

Name	Data Type	Measurement Unit	Description
Sex	nominal	-	M, F, and I (infant)
Length	continuous	mm	Longest shell measurement
Diameter	continuous	mm	perpendicular to length
Height	continuous	mm	with meat in shell
Whole weight	continuous	grams	whole abalone
Shucked weight	continuous	grams	weight of meat
Viscera weight	continuous	grams	gut weight (after bleeding)
Shell weight	continuous	grams	after being dried
Rings	integer	-	+1.5 gives the age in years

Age of Abalones by Whole Weight Best fit lines shown by sex

Relationship between Abalone age/rings and Whole Weight

> fit1_full <- lm(age \sim factor (sex) + length + diameter + height + wholeWeight + shuckedWeight + visceraWeight + shellWeight + diameter ${ }^{*}$ height, data $=$ abalone)
> summary(fit1_full)
Call:
$\operatorname{lm}($ formula $=$ age \sim factor $(s e x)+$ length + diameter + height + wholeWeight + shuckedWeight + visceraWeight + shellWeight + diameter * height, data $=$ abalone)

Residuals:

Fit the full model: Model 1

Min	$1 Q$	Median	$3 Q$	Max
-12.5374	-1.3104	-0.3387	0.8896	14.3819

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	3.09937	0.38314	8.089	7.80e-16	
factor(sex)I	-0.72354	0.10201	-7.093	$1.54 \mathrm{e}-12$	***
factor(sex)M	0.04222	0.08256	0.511	0.609110	
length	-6.93065	1.92719	-3.596	0.000327	
diameter	22.61123	2.54307	8.891	< 2e-16	**
height	48.84643	4.44716	10.984	< 2e-16	***
wholeWeight	9.75707	0.72347	13.487	< 2e-16	
shuckedWeight	-18.92136	0.81497	-23.217	< 2e-16	***
visceraWeight	-8.79936	1.29604	-6.789	$1.28 \mathrm{e}-11$	*
shellWeight	11.02196	1.14157	9.655	< 2e-16	*
diameter:height	-102.44668	11.24096	-9.114	< 2e-16	***
Signif. codes:	0 '***’ 0.0	1 '**' 0	$1{ }^{\text {'*' }}$	05 '.	

Residual standard error: 2.173 on 4166 degrees of freedom Multiple R-squared: 0.5469, Adjusted R-squared: 0.5458
F-statistic: 502.9 on 10 and 4166 DF, p-value: < $2.2 \mathrm{e}-16$
> fit2 <- lm(age ~ factor(sex) + length + diameter + height + wholeWeight

+ shuckedWeight + visceraWeight + shellWeight, data $=$ abalone)
> summary(fit2)

Call:

lm (formula $=$ age \sim factor $($ sex $)+$ length + diameter + height + wholeWeight + shuckedWeight + visceraWeight + shellWeight, data $=$ abalone)

Fit the subset model: Model 2

Residuals:				
Min	$1 Q$	Median	$3 Q$	Max
-10.4800	-1.3053	-0.3428	0.8600	13.9426

Coefficients:

	Estima	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	5.39464	0.29157	18.502	< 2e-16	***
factor(sex)I	-0.82488	0.10240	-8.056	1.02e-15	***
factor(sex)M	0.05772	0.08335	0.692	0.489	
length	-0.45834	1.80912	-0.253	0.800	
diameter	11.07510	2.22728	4.972	6.88e-07	***
height	10.76154	1.53620	7.005	$2.86 \mathrm{e}-12$	***
wholeWeight	8.97544	0.72540	12.373	< 2e-16	***
shuckedWeight	-19.78687	0.81735	-24.209	$<2 \mathrm{e}-16$	***
visceraWeight	-10.58183	1.29375	-8.179	3.76e-16	***
shellWeight	8.74181	1.12473	7.772	$9.64 \mathrm{e}-15$	***
Signif. codes:	0 '***'	0.001 '**'	0.01 '*’	0.05 '.'	0.1

Residual standard error: 2.194 on 4167 degrees of freedom Multiple R-squared: 0.5379, Adjusted R-squared: 0.5369 F-statistic: 538.9 on 9 and 4167 DF, p-value: < 2.2e-16


```
> anova(fit1_full, fit2)
Analysis of Variance Table
Model 1: age ~ factor(sex) + length + diameter + height + wholeWeight +
        shuckedWeight + visceraWeight + shellWeight + diameter *
        height
Model 2: age ~ factor(sex) + length + diameter + height + wholeWeight +
        shuckedWeight + visceraWeight + shellWeight
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 4166 19669
2 4167 20061-1 -392.14 83.059 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Conclusion: stay with the full model

In-Class Exercise 1 : One-way ANOVA

Two-way ANOVA

Two-way ANOVA

- Participating the total variation with respect to two-way factors/groups:
- $S S T=S S T_{\text {model }}+S S E_{\text {residual }}$
- $S S T_{\text {model }}=$ SST $_{\text {factorA }}+$ SST $_{\text {factorB }}+\mathrm{SST}_{\mathrm{AxB}}$ interaction

Two-way ANOVA’s Have Three Models

- Main Effect of Factor B (blue symbols, means)
- Main Effect of Factor A (red symbols, means)
- A x B Interaction (green lines, means of differences)

Two-way ANOVA

THREE Null Hypotheses

- Hypothesis for Factor A = Main Effect of Factor A
- Hypothesis for Factor B = Main Effect of Factor B
- Hypothesis for Interaction between Factor A and Factor $B=$ Factor A x Factor B Interact

Source	Sum of Squares	df	Mean Square	F-Ratio
Main Effect-A	$\mathrm{SST}_{\mathrm{A}}$	df_{A}	MS ${ }_{\text {A }}$	$\mathrm{MS}_{\mathrm{A}} / \mathrm{MSE}_{\text {residual }}$
Main Effect-B	SST ${ }_{\text {B }}$	df_{B}	$\mathrm{MS}_{\text {B }}$	MS ${ }_{\text {B }} / \mathrm{MSE}_{\text {residual }}$
A X B Interact	$S S S T_{\text {AXB }}$	$\mathrm{df}_{\text {AXB }}$	$M S_{\text {AXB }}$	$\mathrm{MS}_{\text {AXB }} / \mathrm{MSE}_{\text {residual }}$
Residual (Error)	SSE ${ }_{\text {residual }}$	$\mathrm{df}_{\text {resid }}$	ual $\mathrm{MSE}_{\text {residual }}$	
Total	$\mathrm{SST}_{\text {Total }}$	$\mathrm{df}_{\text {Total }}$	$\mathrm{MS}_{\text {Total }}$	

Two-way ANOVA: 3 omnibus null hypotheses

- Main effect Factor A: $H_{0}: \sigma_{A}^{2} \leq \sigma_{r}^{2}$
- Main effect Factor B: $H_{0}: \sigma_{B}^{2} \leq \sigma_{r}^{2}$
- Interaction AxB: $\quad H_{0}: \sigma_{A \times B}^{2} \leq \sigma_{r}^{2}$

Main effect of A?

none

Main effect of B ?
yes

AXB Interaction?

none

Factor A (L1)Factor A (L2)

Main effect of A ?
yes

Main effect of B ?
yes

AXB Interaction?

none

Example related measures:

- before-after
- identical twins
- isogenic littermates
- split tissue
- cell culture
- one cell
- one extract

Question: Are any measurements intrinsically-related? Yes? The are from the same replicate, use related measures for that factor

Two-way ANOVA Completely Randomized

Two-way ANOVA: Completely Randomized on factorA and factorB

```
out <- ezANOVA(
    between= c(factorB,
        factorA),
)
```

Effect	DFn	DFd SSn		F	p	p<. 05	
1 factorA	1	243123	566	132.3	2.988e-11	*	0.846
2 factorB	2	241770	566	37.5	4.117e-08	*	0.757
3 factorA:factor	B	241673	566	35.4	6.871e-08		0.747

Two-way ANOVA Related Measures

Group means are not independent! We can't unpair them!!

Every replicate (color) IS independent

Two-way ANOVA : Repeated Measures on factorA and factorB

out <- ezANOVA(
within $=c($ factorA, factorB),
)

out\$ANOVA Effect	DFn DFd	SSn	SSd	F	p	$\mathrm{p}<.05$ ges
1 (Intercept)	14	24398	53	1816.3	1.811e-06	0.977
2 factorA	14	3123	46	268.2	$8.137 \mathrm{e}-05$	0.846
3 factorB	28	1770	275	25.6	3.304e-04	0.757
4 factorA:factorB	28	1673	190	35.1	$1.088 \mathrm{e}-04$	0.747

Two-way ANOVA mixed

Related Measures on factor A
Completely Randomized on factor B

Two-way ANOVA mixed

Related Measures on factor A Completely Randomized on factor B

```
out <- ezANOVA(
between= factorB,
within = factorA
)
```

Effect	DFn	DFd	SSn	SSd	F	p p<	$\mathrm{p}<.05$ ges
1 (Intercept)	1	12	24398	329	887	$1.275 \mathrm{e}-12$	0.977
2 factorB	2	12	1770	329	32	$1.495 \mathrm{e}-05$	* 0.757
3 factorA	1	12	3123	236	158	$2.859 \mathrm{e}-08$	0.846
4 factorB: factorA	2	12	1673	236	42	$3.642 \mathrm{e}-06$	* 0.747

Two-way ANOVA mixed

Completely Randomized on factor A Related Measures on factor B

Two-way ANOVA mixed

Completely Randomized on factor A Related Measures on factor B

$$
\begin{aligned}
& \text { out <- ezANOVA(} \\
& \text {... } \\
& \text { between= factorA, } \\
& \text { within = factorB, }
\end{aligned}
$$

)

Example data: Attention Network Test (ANT)

A data frame with 5760 observations on the following 10 variables. subnum a factor with levels 1234567891011121314151617181920 group a factor with levels Control Treatment
block a numeric vector
trial a numeric vector
cue a factor with levels None Center Double Spatial flank a factor with levels Neutral Congruent Incongruent
location a factor with levels down up
direction a factor with levels left right
$r t$ a numeric vector
error a numeric vector

Response Time vs. Group

Mixed two-way ANOVA

- Response: response time (rt)
- Completely Randomized on group
- Related Measures on cue and flank

```
#Run an ANOVA on the mean correct RT data.
rt_anova = ezANOVA(data = ANT_correct,
    dv = rt,
    wid = subnum,
    within = .(cue,flank),
    between = group
)
#Show the ANOVA and assumption tests.
print(rt_anova)
```

between: "levels of this factor vary between replicates" within: "levels of this factor vary within replicates"

Output variables by ezANOVA():

DFn	Degrees of Freedom in the numerator (a.k.a. DFeffect).
DFd	Degrees of Freedom in the denominator (a.k.a. DFerror).
SSn	Sum of Squares in the numerator (a.k.a. SSeffect).
SSd	Sum of Squares in the denominator (a.k.a. SSerror).
F	F-value.
p	p-value (probability of the data given the null hypothesis).
$\mathrm{p}<.05$	Highlights p-values less than the traditional alpha level of .05.
ges	Generalized Eta-Squared measure of effect size (see in references below: Bakeman, 2005).
GGe	Greenhouse-Geisser epsilon.
$\mathrm{p}[\mathrm{GGe}]$	p-value after correction using Greenhouse-Geisser epsilon.
$\mathrm{p}[\mathrm{GGe}]<.05$	Highlights p-values (after correction using Greenhouse-Geisser epsilon) less than the traditional alpha level of
HFe	Huynh-Feldt epsilon.
$\mathrm{p}[\mathrm{HFe}]$	p-value after correction using Huynh-Feldt epsilon.
$\mathrm{p}[\mathrm{HFe}]<.05$	Highlights p-values (after correction using Huynh-Feldt epsilon) less than the traditional alpha level of .05.
W	Mauchly's W statistic

Outcome/Response/Dependent Variable is Continuous

Common mistakes with ANOVA

- Overdesigned. Testing too many factors \& levels simultaneously.
- Treating technical replicates as independent
- Not controlling Family-wise Error Rate (FWER) in posthoc tests
- Running Completely Randomized analysis on Related Measures designs
- Running posthoc range tests when RM
- Never doing a priori power / sample size analysis (Week 11 Lecture)

Best Practices

Step1: Make a tidy data frame

- One variable per column. One column for the unique subject ID
- Missing data? Exclude or impute (by sample mean)

Step2: Plot the data

- Response vs. Factors

Step3: Use
ez::ezANOVA() or aov()

- Is factor Completely Randomized (between) or Related Measures (within)?

When Data Assumptions Cannot be Satisfied?

Permutation test (Week 13 Lecture)

In-Class Exercise 2 : Two-way ANOVA

[^0]: SSR is equivalent to $\mathrm{SST}_{\text {group }}$
 n is Sample Size

