

# Introduction to ANOVA

10/21/2022 (Week 9) Jingjing Yang, PhD Assistant Professor of Human Genetics

<u> Jingjing.yang@emory.edu</u>

## Outline

#### ANOVA

#### **One-way ANOVA**

#### **Connection with Regression**

#### Two-way ANOVA

## Regression or ANOVA/ttests?

- Regression emphasizes overall weight of an independent variable predictively
  - Prediction
  - Test
- ANOVA/t-tests emphasize "statistical significance" after experiment
  - Test mean differences of a continuous variable between two groups: Two sample t-test
  - Test differences of a continuous variable among multiple groups: Analysis of Variance (ANOVA)



# Categorical variables

Study how a variable would change according to different factors/levels of a categorical variables (e.g., group variable)

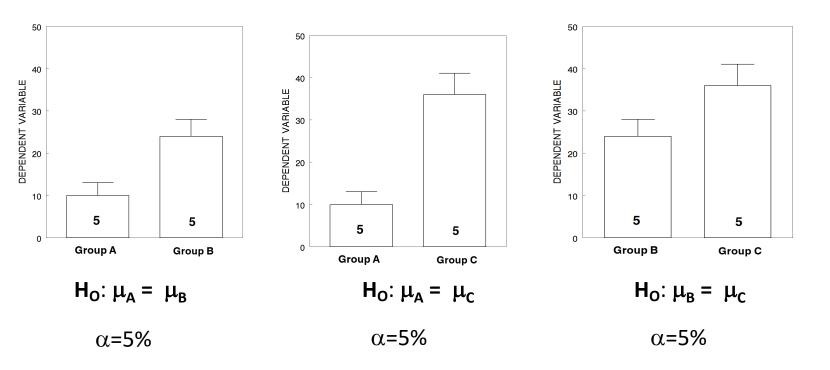
Especially when the categorical variable has factors/levels >2

Factor data type in R

For example, sex variable in the *abalones* dataset contains values for M, F, and I

#### Let A, B & C be 3 levels of one factor: do any differ from the others?

If we do multiple pair-wise Two-sample t-test



#### Why Multiple Testing Matters

• In general, if we perform m hypothesis tests, what is the probability of at least 1 false positive?

P(Making an error) =  $\alpha$ 

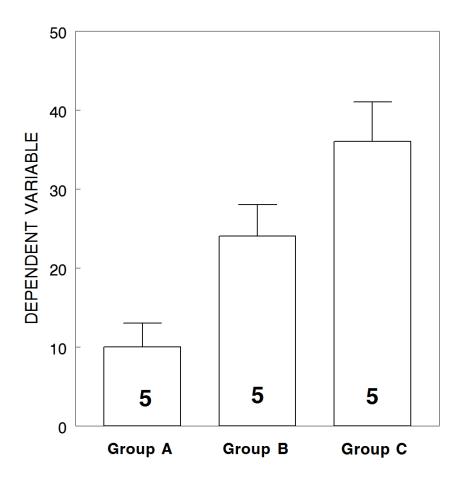
P(Not making an error) = 1 -  $\alpha$ 

P(Not making an error in m tests) =  $(1 - \alpha)^m$ 

P(Making at least 1 error in m tests) = 1 -  $(1 - \alpha)^m$ 

3 Hypothesis tests
Family-wise type1 error: 14.2% = 1 – (1 – 0.05)^3
(Week 12 Lecture about Multiple Testing)

### **One-way ANOVA**

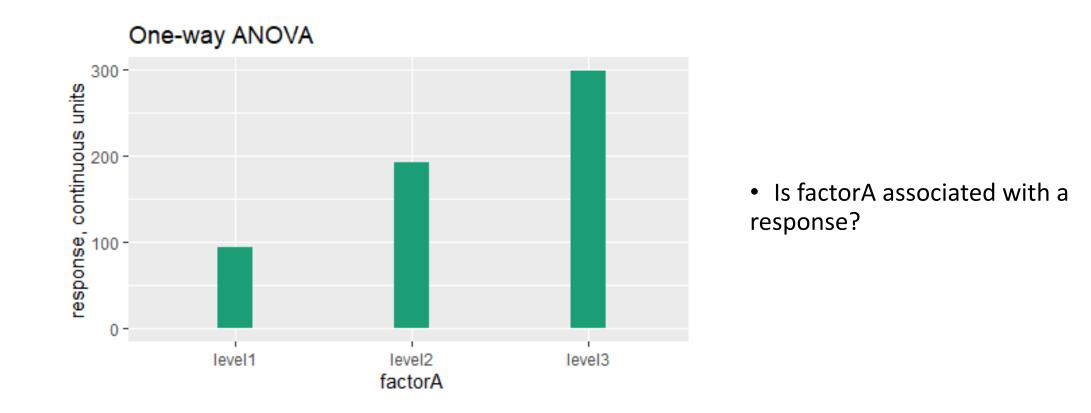


1 Hypothesis test Family-wise type1 error : 5%

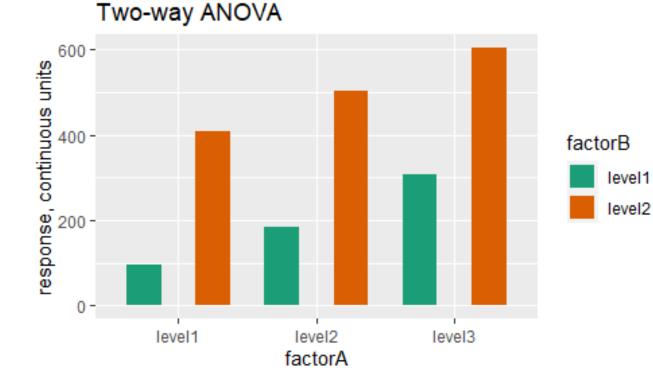
$$H_0: \mu_A = \mu_B = \mu_C$$

 $H_a$ : At least one of the means is different

## 1 question for one factor

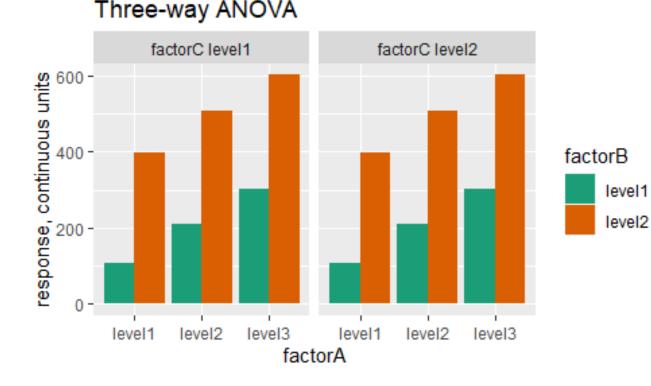


## 3 questions for two factors



- Is factorA associated with a response?
- Is factorB associated with a response?
- Is the interaction between factorA and factorB associated with a response?

## 7 questions for three factors



- Is factorA associated with a response?
- Is factorB associated with a response?
- Is factorC associated with a response?
- Is the interaction between factorA and factorB associated with a response?
- Is the interaction between factorA and factorC associated with a response?
- Is the interaction between factorB and factorC associated with a response?
- Is the interaction among factorA, factor B, and factorC associated with a response?

## One-way ANOVA

## One-way ANOVA

#### • Hypothesis

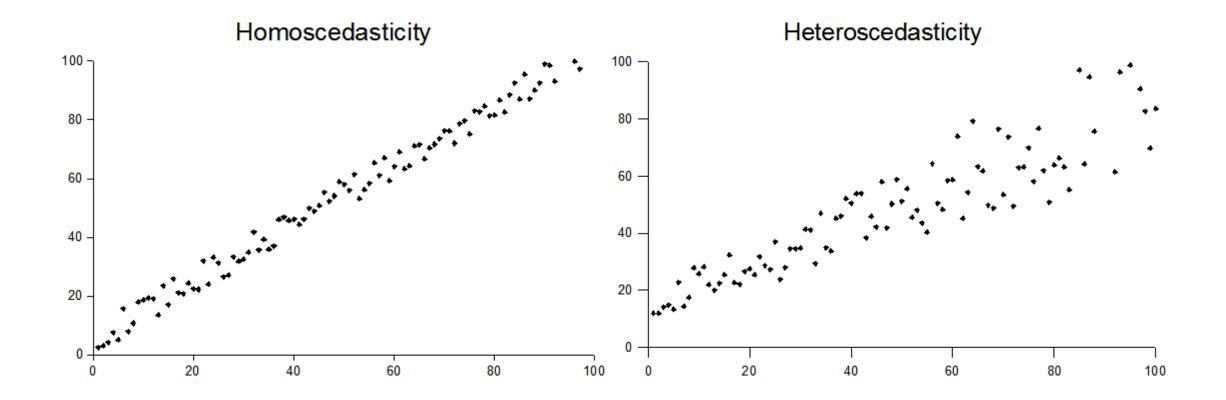
• 
$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

•  $H_a$ : At least one of the means is different

#### Assumptions

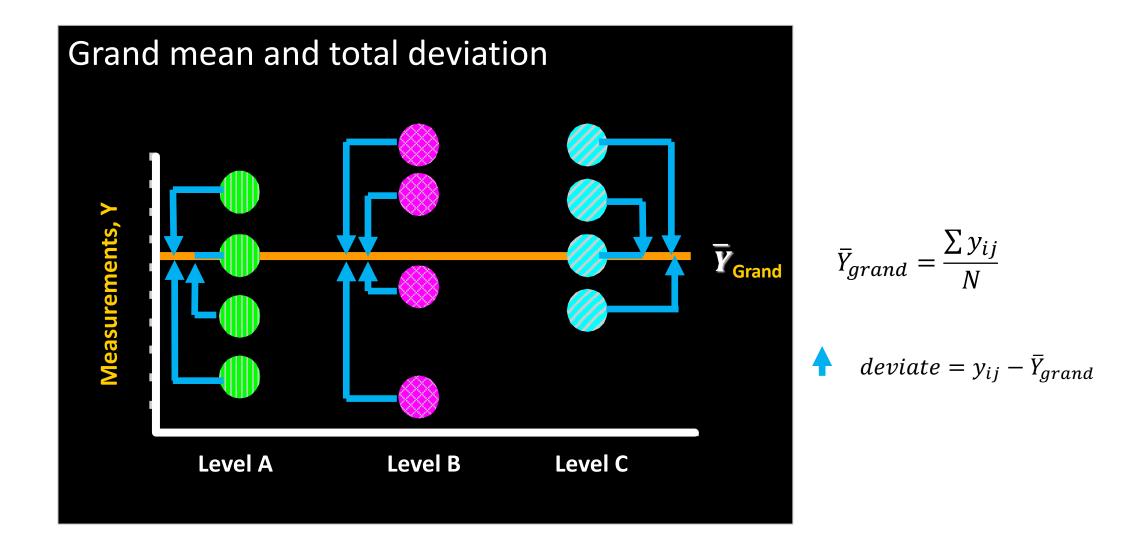
- Sample independence
- Normality of the continuous variable per group
- Homogeneity of variances (aka, Homoscedasticity): assuming the residuals all have the same variance

## Homoscedasticity vs. Heteroscedasticity



# Rational of ANOVA

- Partition total data variation into two sources
  - Between levels/groups (model, regression model)
  - Within levels/groups (residuals, error)
- If  $H_0: \mu_1 = \mu_2 = \dots = \mu_k$  is true, the standardized variances (**between group vs.** within group) are equal to one another
- F test statistic



$$\sum_{i=1}^{N} (y_{ij} - \bar{Y}_{grand})^2 = Sum \text{ of Squares Total} \qquad s^2 = variance = MS_{total} = \frac{SST}{df_{total}} \qquad s = \sqrt{\frac{SST}{df_{total}}}$$
$$df_{total} = N-1$$

## Partitioning Total Variation

Variation is simply average Squared Deviations from the Mean

$$SST = SST_{group} + SSE_{residual}$$

$$\sum_{j=1}^{K} \sum_{i=1}^{n_j} (y_{ij} - \overline{Y})^2 = \sum_{j=1}^{K} n_j (\overline{y_j} - \overline{Y})^2 + \sum_{j=1}^{K} \sum_{i=1}^{n_j} (y_{ij} - \overline{y_j})^2$$

Sum of squared deviations from the grand mean across all N observations Sum of squared deviations for each group mean from the grand mean Sum of squared deviations for all observations from each group mean across all K groups

 $N = n_1 + n_2 + \dots + n_K$ 

$$\overline{y}_{grand} = \frac{\sum y_{ij}}{N}$$

$$\overline{y}_{grand} = \frac{\sum y_{ij}}{N}$$

$$group means \ \overline{y}_{j} = \frac{\sum y_{i}}{n_{j}}$$

$$group means \ \overline{y}_{j} = \frac{\sum y_{i}}{n_{j}}$$

$$group deviate = \overline{y}_{j} - \overline{y}_{grand}$$

$$residual deviate = y_{ij} - \overline{y}_{j}$$

$$\sum n(\mathbf{A})^{2} = Sum of Squares group$$

$$MS_{group} = \frac{SST_{group}}{df_{group}}$$

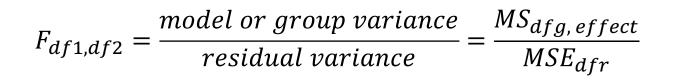
$$F_{K-1, N-K} \sim \frac{\sum \mathbf{A}^{2}/df_{g} = MS_{group}}{\sum \mathbf{A}^{2}/df_{g} = MS_{group}}$$

$$\sum (\mathbf{A})^{2} = Error Sum of Squares$$

$$MSE_{residual} = \frac{SSE_{residual}}{df_{residual}}$$

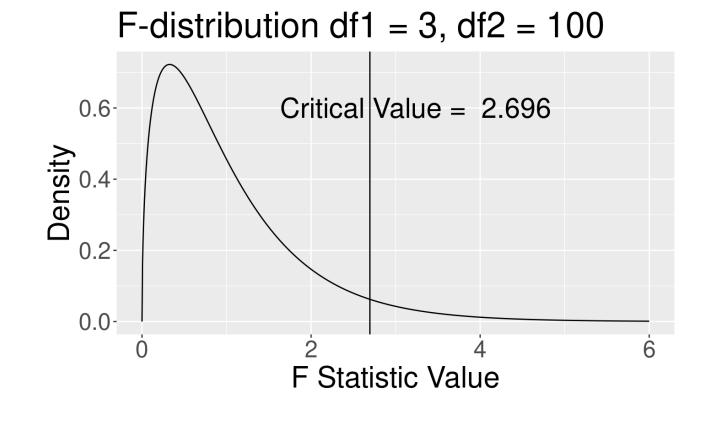
$$df_{g}=K-1, \ df_{f}=N-K$$

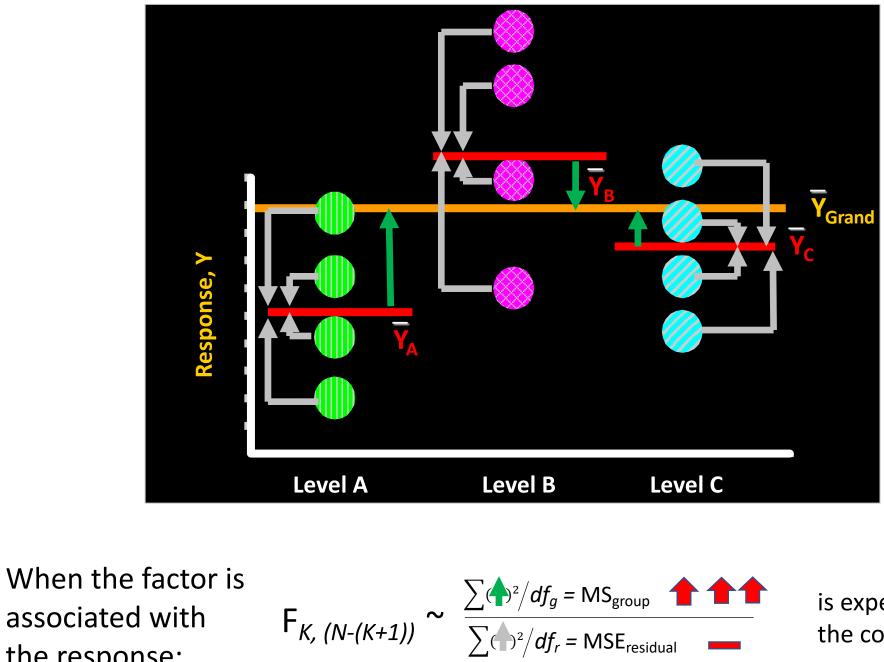
## ANOVA F-test



Follows an F-distribution under the NULL hypothesis.

- Null distributions of F(3, 100)
- One-sided critical values of F(3, 100)
   qf(0.95, df1 = 3, df2 = 100)
   2.696
- If our test F is as or more extreme than the critical value, we reject the null hypothesis.





the response:

is expected to be greater than the corresponding critical value.

# Statistical Analysis of an ANOVA design is usually a two-step process

• Step 1: F Test of the omnibus null

$$\mathsf{H}_{\mathsf{o}}: \sigma^2_{\mathsf{model}} \leq \sigma^2_{\mathsf{residual}}$$

Step 2: Multiple *post hoc* comparisons of group means

$$H_o: \mu_A \leq \mu_B \leq \mu_C \dots, \leq \mu_k$$

#### **ANOVA Table**

| Source of Variation | df  | Sum of<br>Squares | MS                  | F                                             |
|---------------------|-----|-------------------|---------------------|-----------------------------------------------|
| Group               | k-1 | SST <sub>G</sub>  | $\frac{SST_G}{k-1}$ | $\frac{\frac{SST_G}{k-1}}{\frac{SST_E}{N-k}}$ |
| Error               | N-k | SST <sub>E</sub>  | $\frac{SST_E}{N-k}$ |                                               |
| Total               | N-1 | SST               |                     |                                               |

 $SST_G = SST_{group}$ 

 $SST_E = SSE_{residual}$ 

 $\eta^2 = \frac{SST_G}{SST_{Total}}$ , "ges" generalized eta square in results by ezANOVA() Equivalent to regression  $R^2 = \frac{SSR}{SST_{Total}} = 1 - \frac{SSE_{residual}}{SST_{Total}}$  **Example dataset**: a quantitative trait X was measured, and a single SNP was genotyped

#### **Our** Data:

| AA: | 82, 83, 97 | $\bar{x}_{1.} = (82 + 83 + 97)/3 = 87.3$      |
|-----|------------|-----------------------------------------------|
| AG: | 83, 78, 68 | $\overline{x}_{2.} = (83 + 78 + 68)/3 = 76.3$ |
| GG: | 38, 59, 55 | $\overline{x}_{3.} = (38 + 59 + 55)/3 = 50.6$ |

- Let  $X_{ii}$  denote the data from the i<sup>th</sup> level and j<sup>th</sup> observation
- Overall, or **grand mean**, is:

$$\overline{x}_{..} = \sum_{i=1}^{K} \sum_{j=1}^{J} \frac{x_{ij}}{N}$$

 $\overline{x}_{..} = \frac{82 + 83 + 97 + 83 + 78 + 68 + 38 + 59 + 55}{9} = 71.4$ 

(X is the continuous response variable Y in the previous slide)

#### Partitioning **Total Variation**

- $SST_G = SST_{group}$
- $SST_F = SSE_{residual}$

SST<sub>G</sub> SST SST<sub>F</sub> +=  $\sum_{i=1}^{K} \sum_{j=1}^{J} (x_{ij} - \bar{x}_{..})^2 \qquad \sum_{i=1}^{K} n_i \bullet (\bar{x}_{i.} - \bar{x}_{..})^2 \qquad \sum_{i=1}^{K} \sum_{j=1}^{J} (x_{ij} - \bar{x}_{i.})^2$ 

 $(82 - 71.4)^{2} + (83 - 71.4)^{2} + (97 - 71.4)^{2} +$  $(83-71.4)^{2} + (78-71.4)^{2} + (68-71.4)^{2} +$  $(38-71.4)^{2} + (59-71.4)^{2} + (55-71.4)^{2} =$ 

 $3 \cdot (87.3 - 71.4)^2 +$  $3 \cdot (76.3 - 71.4)^2 +$  $3 \cdot (50.6 - 71.4)^2 =$   $(82 - 87.3)^{2} + (83 - 87.3)^{2} + (97 - 87.3)^{2} +$  $(83 - 76.3)^{2} + (78 - 76.3)^{2} + (68 - 76.3)^{2} +$  $(38-50.6)^2 + (59-50.6)^2 + (55-50.6)^2 =$ 

506 2630.2 2124.2

#### Partitioning Total Variation

i=1 j=1

- $SST_G = SST_{group}$
- $SST_E = SSE_{residual}$

$$SST = SST_{G} + SST_{E}$$

$$\sum_{i=1}^{K} \sum_{j=1}^{J} (x_{ij} - \overline{x}_{..})^{2} \qquad \sum_{i=1}^{K} n_{i} \cdot (\overline{x}_{i.} - \overline{x}_{..})^{2} \qquad \sum_{i=1}^{K} \sum_{j=1}^{J} (x_{ij} - \overline{x}_{i.})^{2}$$

$$= \overline{x}_{1.} \qquad \cdot \overline{x}_{2.} \qquad \overline{x}_{..} \qquad \overline{$$

## **Calculating Mean Squares**

- To make the sum of squares comparable, we divide each one by their associated degrees of freedom
  - $SST_G = k 1 (3 1 = 2)$
  - $SST_E = N k (9 3 = 6)$
  - SST<sub>T</sub> = N 1 (9 1 = 8)
- $MST_G = 2124.2 / 2 = 1062.1$
- $MST_E = 506 / 6 = 84.3$

 $MST_G = MS_{group}$ 

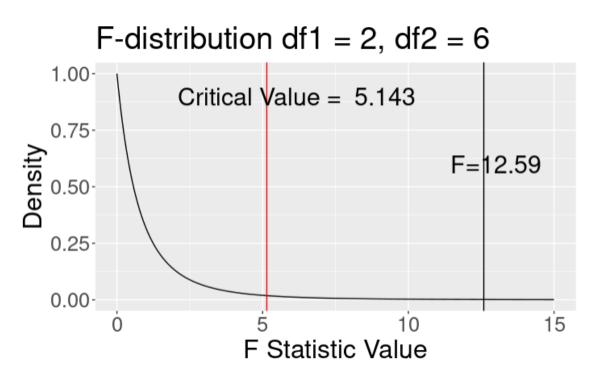
 $MST_E = MSE_{residual}$ 

#### Almost There... Calculating F Statistic

• The test statistic is the ratio of group and error mean squares

$$F = \frac{MST_G}{MST_E} = \frac{1062.2}{84.3} = 12.59$$

- If  $H_0$  is true  $MST_G$  and  $MST_E$  are equal
- Critical value for rejection region is  $F_{\alpha, k-1, N-k}$
- If we define  $\alpha$  = 0.05, then F<sub>0.05, 2, 6</sub> = 5.14



## How to do ANOVA analysis in R?

- Base R function : aov()
- R function: ezANOVA() from R library "ez"

#### One-way ANOVA by **aov()** with Completely Randomized Samples

One-way ANOVA by **ezANOVA()** with Completely Randomized Samples

```
> aov_1 <- ezANOVA(data = example_dt1, dv = X, wid = SampleID,
                 between = SNP, detailed = TRUE, return_aov = TRUE)
+
> print(aov_1)
$ANOVA
 Effect DFn DFd SSn SSd F pp<.05
                                                        ges
    SNP 2 6 2124.222 506 12.5942 0.007119905 * 0.8076208
1
$`Levene's Test for Homogeneity of Variance`
 DFn DFd SSn SSd F
                                 p p<.05
1 2 6 8 330 0.07272727 0.9306614
$aov
Call:
  aov(formula = formula(aov_formula), data = data)
Terms:
                   SNP Residuals
Sum of Squares 2124.222 506.000
Deg. of Freedom
                    2
                             6
Residual standard error: 9.183318
Estimated effects may be unbalanced
```

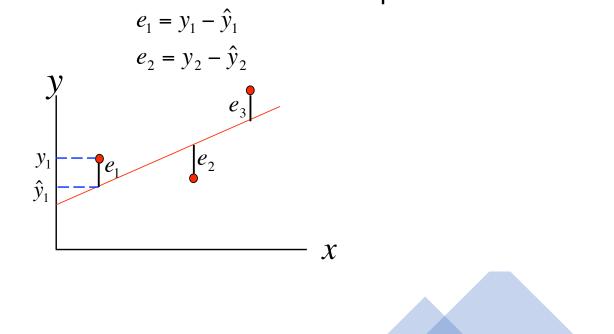
Connection with Linear Regression

#### **Predicted and Residual Values**

• **Predicted**, or fitted, values are values of y predicted by the leastsquares regression line obtained by plugging in  $x_1, x_2, ..., x_n$  into the estimated regression line

$$\hat{y}_1 = \hat{\beta}_0 - \hat{\beta}_1 x_1$$
$$\hat{y}_2 = \hat{\beta}_0 - \hat{\beta}_1 x_2$$

• **Residuals** are the deviations of observed and predicted values



## **Residuals Are Useful!**

• They allow us to calculate the error sum of squares (SSE):

$$SSE = \sum_{i=1}^{n} (e_i)^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Which in turn allows us to estimate  $\sigma^2$ :

$$\hat{\sigma}^2 = \frac{SSE}{n-2}$$
 n is Sample Size

• As well as an important statistic referred to as the coefficient of determination:

$$r^{2} = 1 - \frac{SSE}{SST} \qquad SST = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}$$

Aka. Regression R<sup>2</sup>

## Multivariate Linear Regression

 Linear regression model to two or more independent/predi ctor variables

### Hypothesis Testing: Model Utility Test (or Omnibus Test)

• The first thing we want to know after fitting a model is whether any of the independent variables (X's) are significantly related to the dependent variable (Y):

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \\ + \dots + \beta_k X_k + \epsilon$$

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$
  

$$H_A: \text{ At least one } \beta_1 \neq 0$$
  

$$f = \frac{R^2}{(1 - R^2)} \bullet \frac{k}{n - (k + 1)} \text{ n is Sample Size}$$

Rejection Region:  $F_{\alpha,k,n-(k+1)}$ 

#### **Equivalent ANOVA Formulation of Omnibus Test**

- We can also frame this in our now familiar ANOVA framework
  - partition total variation into two components: **SSE** (unexplained variation) and **SSR** (variation explained by linear model)

| Source of<br>Variation | df  | Sum of Squares                            | MS                | F                       |
|------------------------|-----|-------------------------------------------|-------------------|-------------------------|
| Regression             | k   | $SSR = \sum (\hat{y}_i - \overline{y})^2$ | $\frac{SSR}{k}$   | $\frac{MS_{R}}{MS_{E}}$ |
| Error                  | n-2 | $SSE = \sum (y_i - \hat{y}_i)^2$          | $\frac{SSE}{n-2}$ |                         |
| Total                  | n-1 | $SST = \sum (y_i - \overline{y})^2$       |                   |                         |

Rejection Region:  $F_{\alpha,k,n-(k+1)}$ 

SSR is equivalent to SST<sub>group</sub>

n is Sample Size

#### F Test For Subsets of Independent Variables

- A powerful tool in multiple regression analyses is the ability to compare two models
- For instance say we want to compare:

Full Model:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$ 

Reduced Model:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$ 

Again, another example of ANOVA:

 $SSE_R$  = error sum of squares for reduced model with l predictors

 $SSE_F = error sum of squares for full model with k predictors$ 

$$f = \frac{(SSE_R - SSE_F)/(k-l)}{SSE_F/([n-(k+1)])}$$

n is Sample Size

## **Example of Model Comparison**

• We have a quantitative trait and want to test the effects at two markers, M1 and M2.

Full Model: Trait = Mean + M1 + M2 + (M1\*M2) + error

Reduced Model: Trait = Mean + M1 + M2 + error

$$f = \frac{(SSE_R - SSE_F)/(3-2)}{SSE_F/([100 - (3+1)])} = \frac{(SSE_R - SSE_F)}{SSE_F/96}$$

Rejection Region:  $F_{a, 1, 96}$ 



Model 1. Rings/Age ~ factor(sex) + length + diameter + height + wholeWeight + shuckedWeight + visceraWeight + shellWeight + diameter \* height

VS.

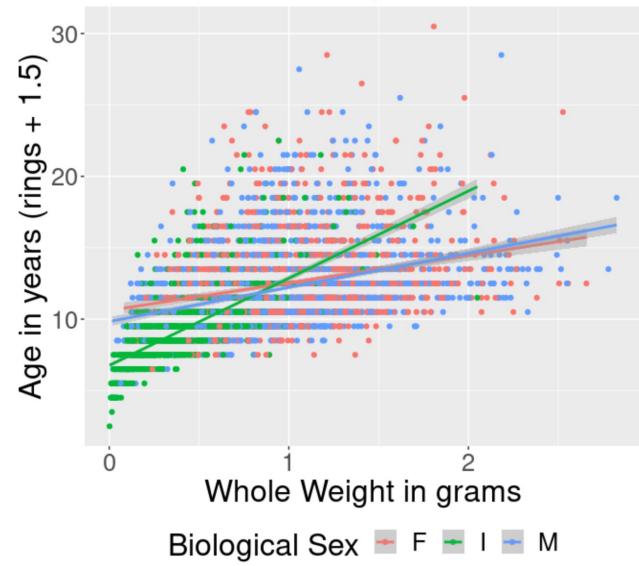
Model 2. Rings/Age ~ factor(sex) + length + diameter + height + wholeWeight + shuckedWeight + visceraWeight + shellWeight

#### **Abalones Dataset**

| Name           | Data Type  | Measurement Unit | Description                 |
|----------------|------------|------------------|-----------------------------|
| Sex            | nominal    | -                | M, F, and I (infant)        |
| Length         | continuous | mm               | Longest shell measurement   |
| Diameter       | continuous | mm               | perpendicular to length     |
| Height         | continuous | mm               | with meat in shell          |
| Whole weight   | continuous | grams            | whole abalone               |
| Shucked weight | continuous | grams            | weight of meat              |
| Viscera weight | continuous | grams            | gut weight (after bleeding) |
| Shell weight   | continuous | grams            | after being dried           |
| Rings          | integer    | -                | +1.5 gives the age in years |

Age of Abalones by Whole Weight Best fit lines shown by sex

Relationship between Abalone age/rings and Whole Weight



Fit the full model: Model 1 > fit1\_full <- lm(age ~ factor(sex) + length + diameter + height + wholeWeight + shuckedWeight + visceraWeight + shellWeight + diameter \* height, data = abalone) > summary(fit1\_full)

1

Call:

lm(formula = age ~ factor(sex) + length + diameter + height +
wholeWeight + shuckedWeight + visceraWeight + shellWeight +
diameter \* height, data = abalone)

Residuals:

| Min      | 1Q      | Median  | 3Q     | Max     |
|----------|---------|---------|--------|---------|
| -12.5374 | -1.3104 | -0.3387 | 0.8896 | 14.3819 |

Coefficients:

|                 | Estimate    | Std. Error | t value  | Pr(>ltl)   |      |
|-----------------|-------------|------------|----------|------------|------|
| (Intercept)     | 3.09937     | 0.38314    | 8.089    | 7.80e-16   | ***  |
| factor(sex)I    | -0.72354    | 0.10201    | -7.093   | 1.54e-12   | ***  |
| factor(sex)M    | 0.04222     | 0.08256    | 0.511    | 0.609110   |      |
| length          | -6.93065    | 1.92719    | -3.596   | 0.000327   | ***  |
| diameter        | 22.61123    | 2.54307    | 8.891    | < 2e-16    | ***  |
| height          | 48.84643    | 4.44716    | 10.984   | < 2e-16    | ***  |
| wholeWeight     | 9.75707     | 0.72347    | 13.487   | < 2e-16    | ***  |
| shuckedWeight   | -18.92136   | 0.81497    | -23.217  | < 2e-16    | ***  |
| visceraWeight   | -8.79936    | 1.29604    | -6.789   | 1.28e-11   | ***  |
| shellWeight     | 11.02196    | 1.14157    | 9.655    | < 2e-16    | ***  |
| diameter:height | -102.44668  | 11.24096   | -9.114   | < 2e-16    | ***  |
|                 |             |            |          |            |      |
| Signif. codes:  | 0 '***' 0.0 | 001'**'0.0 | 01 '*' 0 | .05 '.' 0. | .1'' |
| -               |             |            |          |            |      |

Residual standard error: 2.173 on 4166 degrees of freedom Multiple R-squared: 0.5469, Adjusted R-squared: 0.5458 F-statistic: 502.9 on 10 and 4166 DF, p-value: < 2.2e-16 Fit the subset model: Model 2 > fit2 <- lm(age ~ factor(sex) + length + diameter + height + wholeWeight + shuckedWeight + visceraWeight + shellWeight, data = abalone) > summary(fit2)

Call:

lm(formula = age ~ factor(sex) + length + diameter + height +
wholeWeight + shuckedWeight + visceraWeight + shellWeight,
 data = abalone)

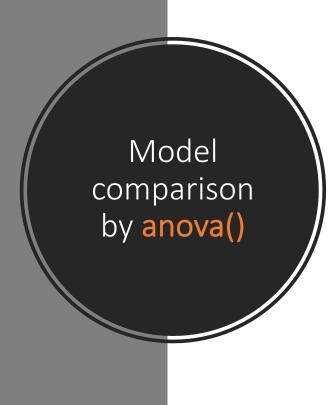
Residuals:

| Min      | 1Q      | Median  | 3Q     | Max     |
|----------|---------|---------|--------|---------|
| -10.4800 | -1.3053 | -0.3428 | 0.8600 | 13.9426 |

Coefficients:

|                | Estimate  | Std. Error | t value  | Pr(>ltl) |          |
|----------------|-----------|------------|----------|----------|----------|
| (Intercept)    | 5.39464   | 0.29157    | 18.502   | < 2e-16  | ***      |
| factor(sex)I   | -0.82488  | 0.10240    | -8.056   | 1.02e-15 | ***      |
| factor(sex)M   | 0.05772   | 0.08335    | 0.692    | 0.489    |          |
| length         | -0.45834  | 1.80912    | -0.253   | 0.800    |          |
| diameter       | 11.07510  | 2.22728    | 4.972    | 6.88e-07 | ***      |
| height         | 10.76154  | 1.53620    | 7.005    | 2.86e-12 | ***      |
| wholeWeight    | 8.97544   | 0.72540    | 12.373   | < 2e-16  | ***      |
| shuckedWeight  | -19.78687 | 0.81735    | -24.209  | < 2e-16  | ***      |
| visceraWeight  | -10.58183 | 1.29375    | -8.179   | 3.76e-16 | ***      |
| shellWeight    | 8.74181   | 1.12473    | 7.772    | 9.64e-15 | ***      |
|                |           |            |          |          |          |
| Signif. codes: | 0 '***'   | 0.001 '**' | 0.01 '*' | '0.05'.' | 0.1 '' 1 |

Residual standard error: 2.194 on 4167 degrees of freedom Multiple R-squared: 0.5379, Adjusted R-squared: 0.5369 F-statistic: 538.9 on 9 and 4167 DF, p-value: < 2.2e-16



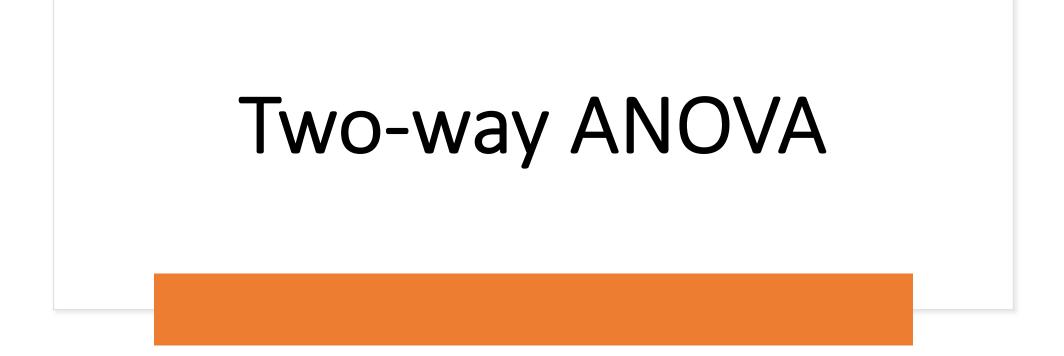
```
> anova(fit1_full, fit2)
Analysis of Variance Table
```

```
Model 1: age ~ factor(sex) + length + diameter + height + wholeWeight +
    shuckedWeight + visceraWeight + shellWeight + diameter *
    height
Model 2: age ~ factor(sex) + length + diameter + height + wholeWeight +
    shuckedWeight + visceraWeight + shellWeight
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 4166 19669
2 4167 20061 -1 -392.14 83.059 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

• Conclusion: stay with the full model



# In-Class Exercise 1 : One-way ANOVA



## **Two-way ANOVA**

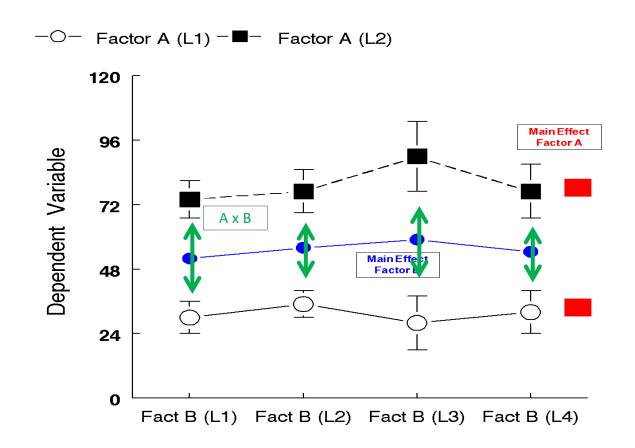
• Participating the total variation with respect to two-way factors/groups:

•  $SST = SST_{model} + SSE_{residual}$ 

• **SST** model = SST<sub>factorA</sub> + SST<sub>factorB</sub> + SST<sub>AxB</sub> interaction

### **Two-way ANOVA's Have Three Models**

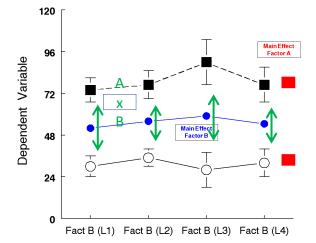
- Main Effect of Factor B (blue symbols, means)
- Main Effect of Factor A (red symbols, means)
- A x B Interaction (green lines, means of differences)



### **Two-way ANOVA**

### THREE Null Hypotheses

- Hypothesis for Factor A = Main Effect of Factor A
- Hypothesis for Factor B = *Main Effect of Factor B*
- Hypothesis for Interaction between Factor A and Factor B = *Factor A x Factor B Interact*



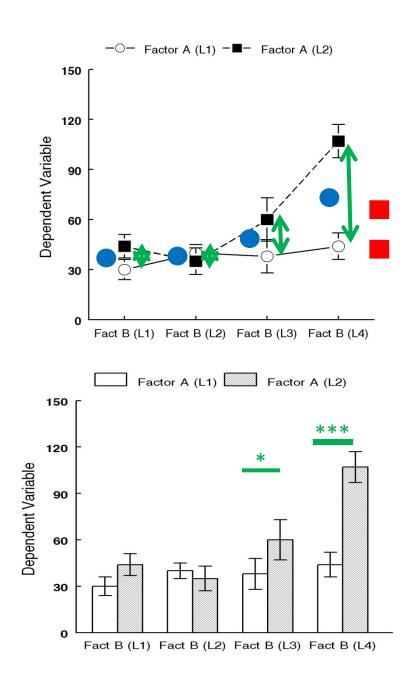
-O- Factor A (L1) -■- Factor A (L2)

| Two-way ANOV                                                      | Two-way ANOVA Table with independent/random samples                                 |                                        |                                                                      |                                                                                                                                                      |  |  |  |  |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <u>Source</u><br>Main Effect-A<br>Main Effect-B<br>A X B Interact | <u>Sum of Squares</u><br>SST <sub>A</sub><br>SST <sub>B</sub><br>SST <sub>AXB</sub> | df <sub>A</sub> M<br>df <sub>B</sub> M | in Square<br>IS <sub>A</sub><br>IS <sub>B</sub><br>IS <sub>AXB</sub> | <u>F-Ratio</u><br>MS <sub>A</sub> /MSE <sub>residual</sub><br>MS <sub>B</sub> /MSE <sub>residual</sub><br>MS <sub>AXB</sub> /MSE <sub>residual</sub> |  |  |  |  |  |  |
| Residual (Error)<br>Total                                         | SSE <sub>residual</sub><br>SST <sub>Total</sub>                                     |                                        | MSE <sub>residual</sub><br>MS <sub>Total</sub>                       |                                                                                                                                                      |  |  |  |  |  |  |

Two-way ANOVA: 3 omnibus null hypotheses

- Main effect Factor A:  $H_0: \sigma_A^2 \le \sigma_r^2$
- Main effect Factor B:  $H_0$ :  $\sigma_B^2 \le \sigma_r^2$
- Interaction AxB:  $H_0: \sigma_{A \times B}^2 \le \sigma_r^2$





Main effects usually detected when interaction occurs

Main effect of A?

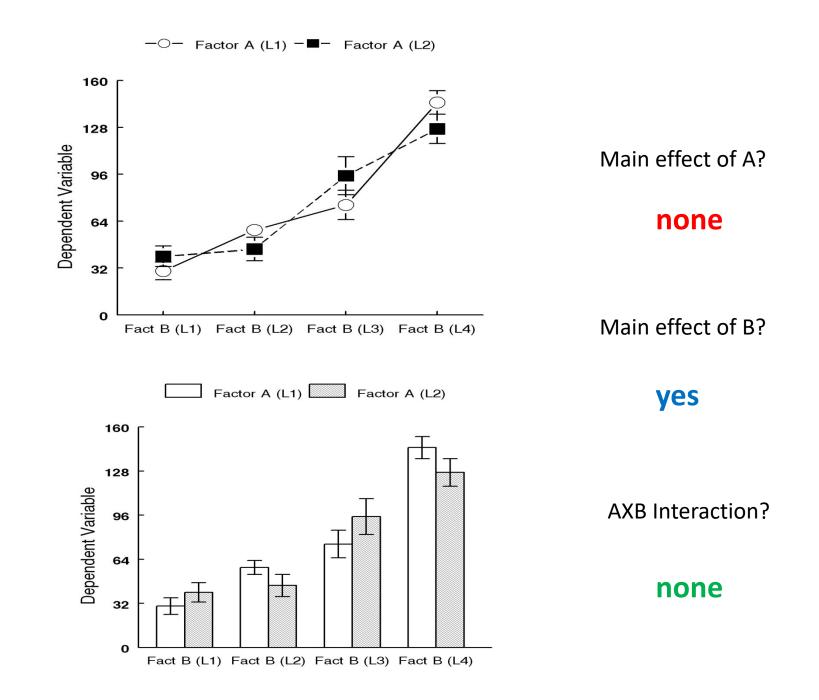
#### yes

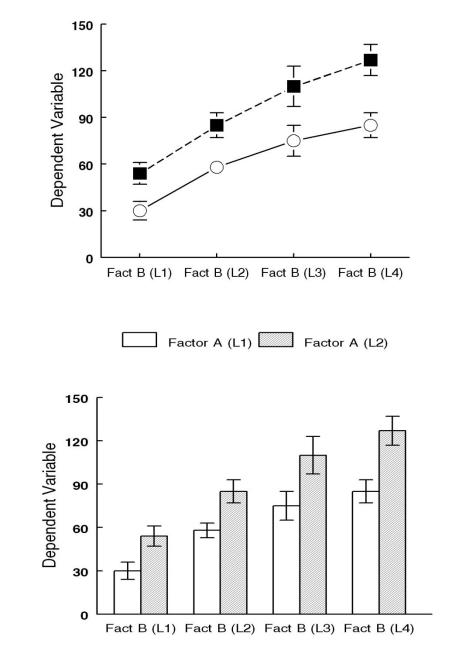
Main effect of B?

#### yes

**AXB Interaction?** 

yes





Main effect of A?

#### yes

Main effect of B?

yes

AXB Interaction?

#### none

ANOVA: Completely Randomized vs. Related Measures

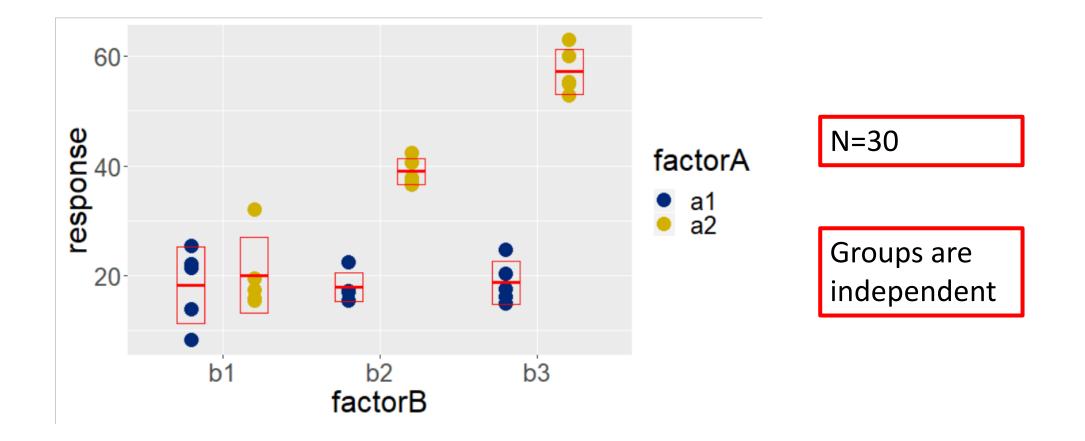
### Example related measures:

- before-after
- identical twins
- isogenic littermates
- split tissue
- cell culture
- one cell
- one extract

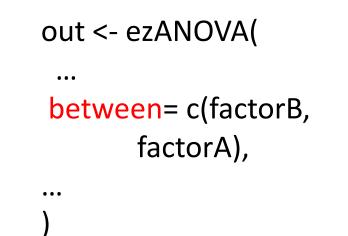
### Question: Are any measurements intrinsically-related?

Yes? The are from the same replicate, use related measures for that factor

# Two-way ANOVA Completely Randomized

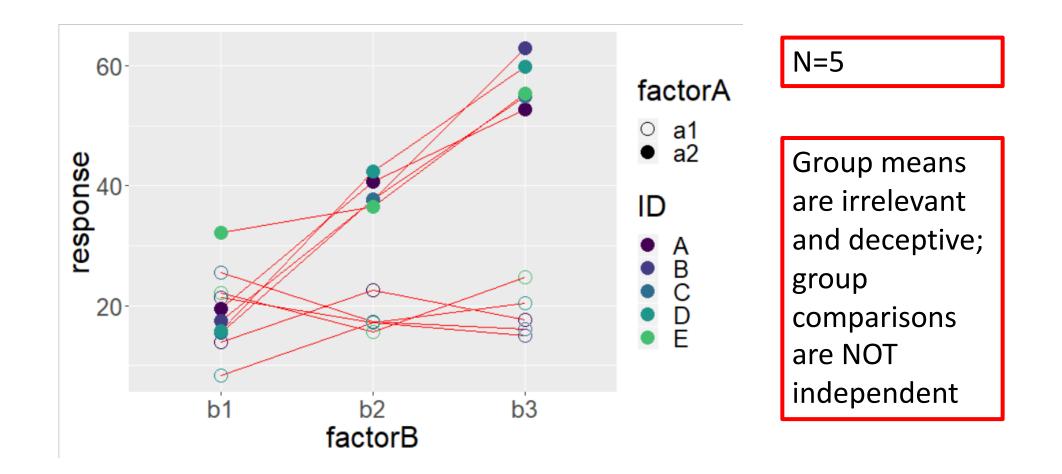


# Two-way ANOVA: Completely Randomized on factorA and factorB

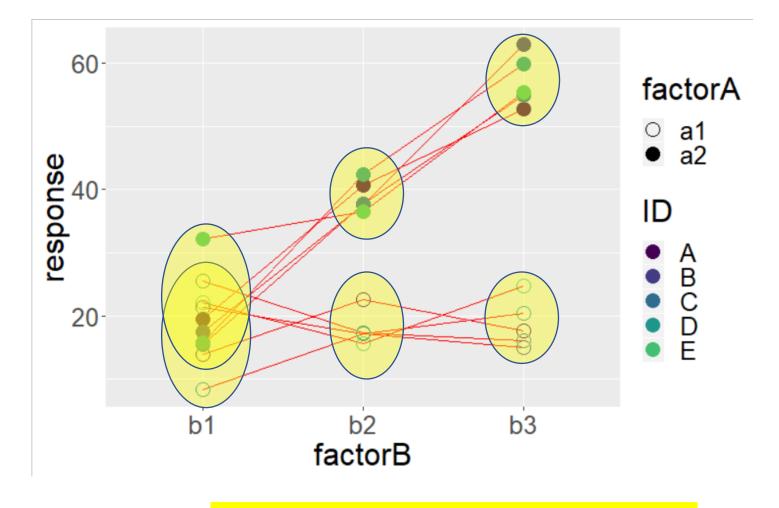


| out\$ANOVA       |     |     |       |     |       |           |       |       |
|------------------|-----|-----|-------|-----|-------|-----------|-------|-------|
| Effect           | DFn | DFC | ssn s | SSd | F     | р         | p<.05 | ges   |
| 1 factorA        | 1   | 24  | 3123  | 566 | 132.3 | 2.988e-11 | *     | 0.846 |
| 2 factorB        | 2   | 24  | 1770  | 566 | 37.5  | 4.117e-08 | *     | 0.757 |
| 3 factorA:factor | в 2 | 24  | 1673  | 566 | 35.4  | 6.871e-08 | *     | 0.747 |

### Two-way ANOVA Related Measures



Group means are not independent! We can't unpair them!!



**Every replicate (color) IS independent** 

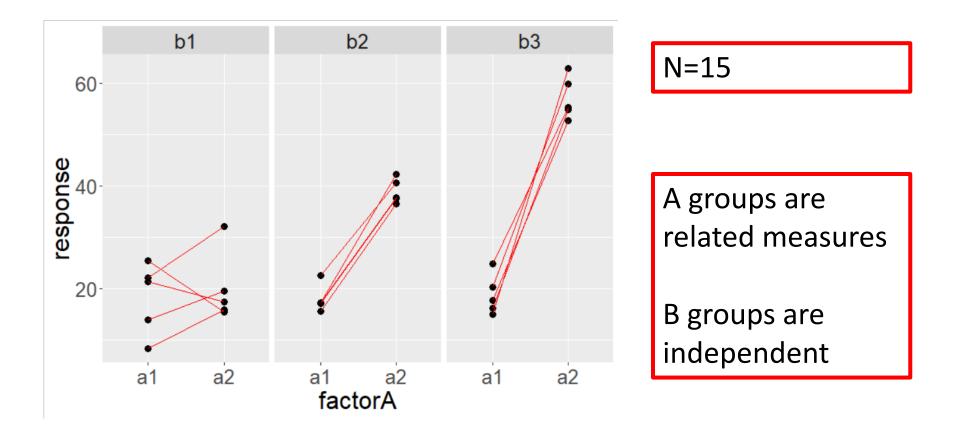
# Two-way ANOVA : Repeated Measures on factorA and factorB

out <- ezANOVA( ... within = c(factorA, factorB), ...

| out\$ANOVA        |     |     |       |     |        |           |     |        |
|-------------------|-----|-----|-------|-----|--------|-----------|-----|--------|
| Effect            | DFn | DFd | SSn   | SSd | F      | р         | p<. | 05 ges |
| 1 (Intercept)     | 1   | 4   | 24398 | 53  | 1816.3 | 1.811e-06 | *   | 0.977  |
| 2 factorA         | 1   | 4   | 3123  | 46  | 268.2  | 8.137e-05 | *   | 0.846  |
| 3 factorB         | 2   | 8   | 1770  | 275 | 25.6   | 3.304e-04 | *   | 0.757  |
| 4 factorA:factorB | 2   | 8   | 1673  | 190 | 35.1   | 1.088e-04 | *   | 0.747  |

## Two-way ANOVA mixed

Related Measures on factor A Completely Randomized on factor B



# Two-way ANOVA mixed

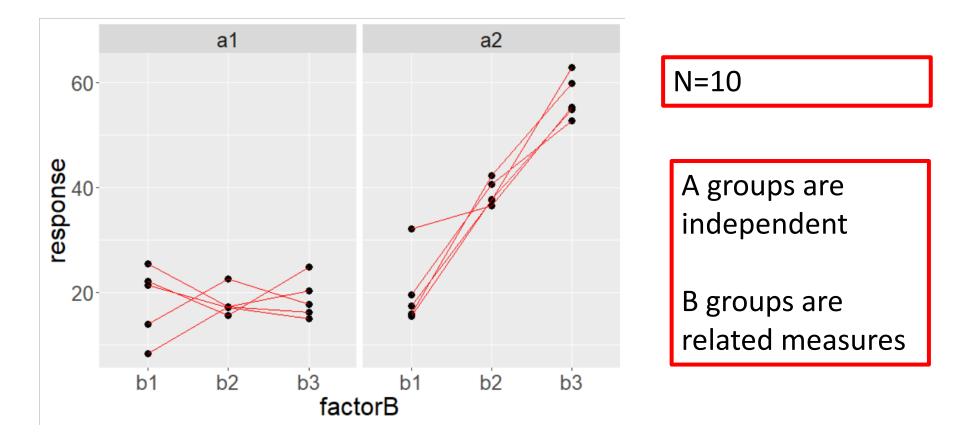
Related Measures on factor A Completely Randomized on factor B

```
out <- ezANOVA(
...
between= factorB,
within = factorA
...
```

| C | out\$ANOVA      |     |     |       |     |     |                   |
|---|-----------------|-----|-----|-------|-----|-----|-------------------|
|   | Effect          | DFn | DFd | SSn   | SSd | F   | p p<.05 ges       |
| 1 | (Intercept)     | 1   | 12  | 24398 | 329 | 887 | 1.275e-12 * 0.977 |
| 2 | 2 factorB       | 2   | 12  | 1770  | 329 | 32  | 1.495e-05 * 0.757 |
| 3 | B factorA       | 1   | 12  | 3123  | 236 | 158 | 2.859e-08 * 0.846 |
| 2 | factorB:factorA | 2   | 12  | 1673  | 236 | 42  | 3.642e-06 * 0.747 |

### Two-way ANOVA mixed

Completely Randomized on factor A Related Measures on factor B



## **Two-way ANOVA mixed** Completely Randomized on factor A Related Measures on factor B

```
out <- ezANOVA(
...
between= factorA,
within = factorB,
...
```

| out\$ANOVA      |      |    |       |     |      |                   |
|-----------------|------|----|-------|-----|------|-------------------|
| Effect          | DFn  |    |       |     |      | p p<.05 ges       |
| 1 (Intercept)   | 1    | 8  | 24398 | 100 | 1945 | 7.700e-11 * 0.977 |
| 2 factorA       | 1    | 8  | 3123  | 100 | 249  | 2.595e-07 * 0.846 |
| 3 factorB       | 2    | 16 | 1770  | 466 | 30   | 3.564e-06 * 0.757 |
| 4 factorA:facto | rB 2 | 16 | 1673  | 466 | 28   | 5.092e-06 * 0.747 |

### Example data: Attention Network Test (ANT)

A data frame with 5760 observations on the following 10 variables.

subnum a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

group a factor with levels Control Treatment

block a numeric vector

trial a numeric vector

cue a factor with levels None Center Double Spatial

flank a factor with levels Neutral Congruent Incongruent

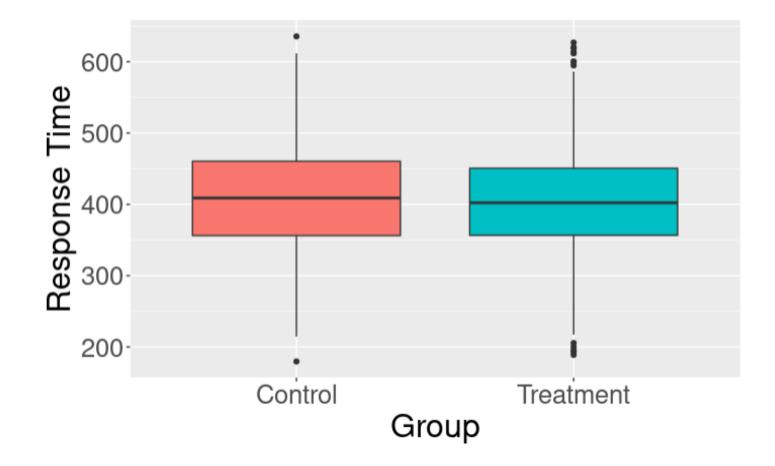
location a factor with levels down up

direction a factor with levels left right

rt a numeric vector

error a numeric vector

### Response Time vs. Group



### Mixed two-way ANOVA

- Response: response time (rt)
- Completely Randomized on group
- Related Measures on cue and flank

between: "levels of this factor vary between replicates" within: "levels of this factor vary within replicates"

\$ANOVA

| Mixed two- |  |
|------------|--|
| way ANOVA  |  |
| results by |  |
| ezANOVA()  |  |

| · · |                 |     |     |             |              |       |            |
|-----|-----------------|-----|-----|-------------|--------------|-------|------------|
|     | Effect          | DFn | DFd | F           | р            | p<.05 | ges        |
| 2   | group           | 1   | 18  | 18.430592   | 4.377562e-04 | *     | 0.07633358 |
| 3   | cue             | 3   | 54  | 516.605213  | 1.005518e-39 | *     | 0.89662286 |
| 5   | flank           | 2   | 36  | 1350.598810 | 1.386546e-34 | *     | 0.92710583 |
| 4   | group:cue       | 3   | 54  | 2.553236    | 6.497492e-02 |       | 0.04110445 |
| 6   | group:flank     | 2   | 36  | 8.768499    | 7.900829e-04 | *     | 0.07627434 |
| 7   | cue:flank       | 6   | 108 | 5.193357    | 9.938494e-05 | *     | 0.11436699 |
| 8   | group:cue:flank | 6   | 108 | 6.377225    | 9.012515e-06 | *     | 0.13686958 |
|     |                 |     |     |             |              |       |            |

```
$`Mauchly's Test for Sphericity`
Effect W p p<.05
3 cue 0.7828347 0.5366835
4 group:cue 0.7828347 0.5366835
5 flank 0.8812738 0.3415406
6 group:flank 0.8812738 0.3415406
7 cue:flank 0.1737053 0.1254796
8 group:cue:flank 0.1737053 0.1254796
```

\$`Sphericity Corrections` Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05 3 cue 0.8652559 1.115029e-34 \* 1.0239520 1.005518e-39 4 group:cue 0.8652559 7.472046e-02 1.0239520 6.497492e-02 5 flank 0.8938738 3.763312e-31 \* 0.9858964 3.964046e-34 6 group:flank 0.8938738 1.297752e-03 \* 0.9858964 8.438369e-04 cue:flank 0.6022111 1.546166e-03 \* 0.7721473 4.745714e-04 8 group:cue:flank 0.6022111 3.424499e-04 \* 0.7721473 7.170939e-05

### **Output variables by ezANOVA():**

DFn Degrees of Freedom in the numerator (a.k.a. DFeffect).

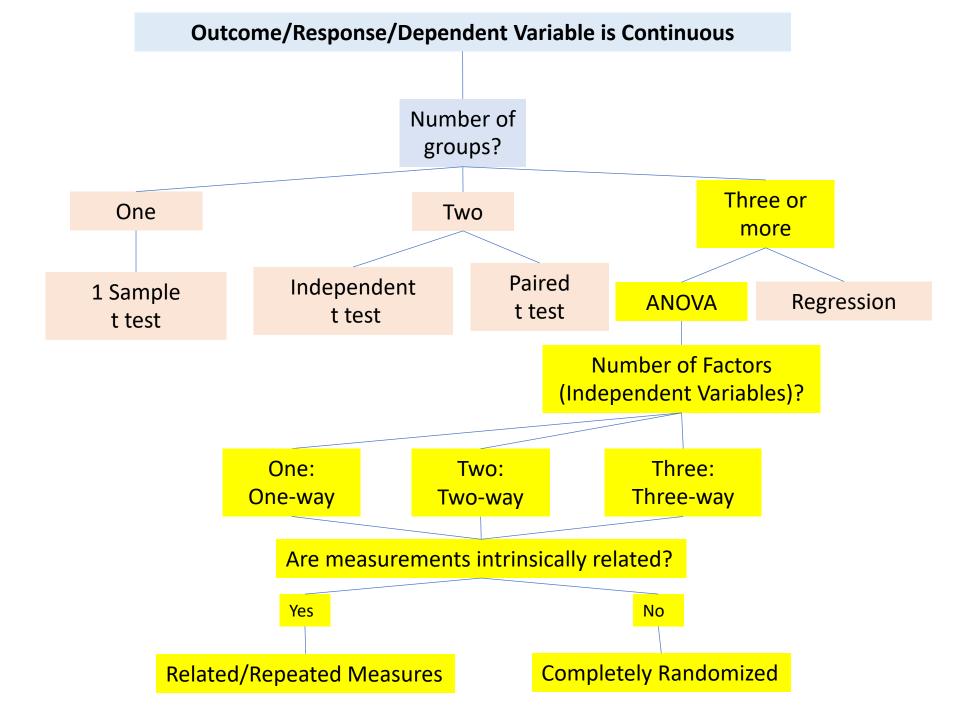
DFd Degrees of Freedom in the denominator (a.k.a. DFerror).

- SSn Sum of Squares in the numerator (a.k.a. SSeffect).
- SSd Sum of Squares in the denominator (a.k.a. SSerror).
- F F-value.
- p p-value (probability of the data given the null hypothesis).
- p<.05 Highlights p-values less than the traditional alpha level of .05.
- ges Generalized Eta-Squared measure of effect size (see in references below: Bakeman, 2005).
- GGe Greenhouse-Geisser epsilon.
- p[GGe] p-value after correction using Greenhouse-Geisser epsilon.
- p[GGe]<.05 Highlights p-values (after correction using Greenhouse-Geisser epsilon) less than the traditional alpha level of

HFe Huynh-Feldt epsilon.

p[HFe] p-value after correction using Huynh-Feldt epsilon.

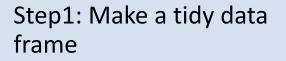
p[HFe]<.05 Highlights p-values (after correction using Huynh-Feldt epsilon) less than the traditional alpha level of .05.</li>W Mauchly's W statistic



Common mistakes with ANOVA

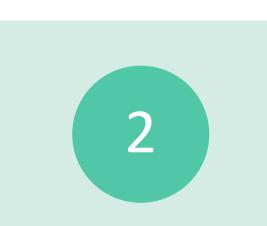
- Overdesigned. Testing too many factors & levels simultaneously.
- Treating technical replicates as independent
- Not controlling Family-wise Error Rate (FWER) in posthoc tests
- Running Completely Randomized analysis on Related Measures designs
  - Running posthoc range tests when RM
- Never doing *a priori* power / sample size analysis (Week 11 Lecture)

# **Best Practices**



1

- One variable per column.
   One column for the unique subject ID
- Missing data? Exclude or impute (by sample mean)



Step2: Plot the data

• Response vs. Factors

3

Step3: Use ez::ezANOVA() or aov()

 Is factor Completely Randomized (between) or Related Measures (within)?

# When Data Assumptions Cannot be Satisfied?

Permutation test (Week 13 Lecture)



# In-Class Exercise 2 : Two-way ANOVA