MACHINE LEARNING

Jingjing Yang, PhD Department of Human Genetics Emory University School of Medicine

Outline

Overview

Machine Learning

- Prediction
 - Product recommendation
- Image Recognition
 - Face ID
- Speech Recognition
 - Siri
- Medical Diagnoses
 - Risk score for Type 2 Diabetes
- Financial Trading

Machine Learning vs. Statistical Learning

- According to Arthur Samuel, Machine Learning algorithms enable the <u>computers to learn from data</u>, <u>and even improve themselves</u>, without being <u>explicitly programmed</u>.
- According to "The Elements of Statistical Learning", the bible of Statistical Learning, Statistical Learning is referred to <u>using statistical methods to extract</u> <u>important patterns and trends</u>, and understand data that were generated in many fields.
- The intersection of Computer Science and Statistics gave birth to probabilistic approaches in Artificial Intelligence.
- Key message: Learning from the DATA, Statistical Methods, Computational Algorithms

Machine Learning

- Machine Learning (ML) is a category of algorithms that allow software applications to become more accurate in predicting outcomes without being explicitly programmed.
- Basic premise of machine learning is to <u>build</u> <u>algorithms that can receive input data and</u> <u>use statistical analysis to predict an output</u> <u>while updating outputs as new data</u> <u>becomes available</u>.

Quick History about Machine Learning

ARTIFICIAL INTELLIGENCE

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

Types of Learning : Supervised, Unsupervised, Reinforcement

Machine Learning Methods

Supervised Learning

Supervised Learning

Regression

- A regression problem is when the output variable is a real measured value, such as "weight", "BMI", "blood pressure".
- Regression analysis is a form of predictive modelling technique which investigates the relationship between dependent and independent variables.

Classification

 A classification problem is when the output variable is a category, such as "disease" or "no disease".

Regression

Classification

Machine Learning Workflow

Machine Learning Workflow

Data Preprocessing (80% time)

Possible data problems

- Missing data: Ignoring or Imputing?
- Noisy data: Excluding or Smoothing?
- Inconsistent data: Excluding or Correcting?
- Outliers : Excluding?

Data types

- Numeric, e.g., age, height, weight
- Categorical, e.g., gender, ethnicity; generally coded as 0/1
- Ordinal, e.g., low/medium/high; generally coded as consecutive numbers such as 0/1/2

Machine Learning Workflow

Machine Learning Data Structure

- **Training set:** Data used for learning, that is to fit the parameters of the classifier/model.
- Validation set: Independent data (different from the training data) used to tune the parameters of a classifier/model (cross-validation is primarily used).
- **Test set:** Independent data (different from the training and validation data) used only to assess the performance of a fully-trained classifier.

Cross Validation

Tuning Parameters & Model Selection

• Tuning Parameters

- Train a set of models with respect to a range of parameters
- Use validation data to select best parameters leading to the best performance

Model Selection

- Train multiple models with respect to different settings
 - For example, different sets of predictive features might be considered
 - Different methods/models might be considered
- Use test data to select a best model with best performance

Machine Learning

Model Evaluation

• Test model performance using a test data set that is independent of the training/validation data sets

• Evaluation criteria

- Regression
 - Mean Squared Error (MSE)

$$\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$

- Classification
 - Misclassification Rate

FalsePositives + FalseNegatives

Ν

• ROC/AUC

Confusion Matrix for Two-group Classification

		True condition				
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\sum \text{ Condition positive}} = \frac{\sum \text{ Condition positive}}{\sum \text{ Total population}}$	<mark>Αccu</mark> <u>Σ True positi</u> Σ Tot	racy (ACC) = ve + Σ True negative al population
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive $\overline{\Sigma}$ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positiveNegative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
	Predicted condition negative	False negative , Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative		
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio	F ₁ score =
		False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR–) = $\frac{FNR}{TNR}$	$(DOR) = \frac{LR+}{LR-}$	2 · Precision · Recall Precision + Recall

ROC Curve

- Receiver operating characteristic (ROC) curve is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied.
- Plot **True Positive Rate** (TPR, sensitivity, recall rate, probability of detection, power) against the **False Positive Rate** (FPR, 1-specificity, probability of false alarm, type I error) **at various threshold settings**.
- Area under the curve (AUC, C statistic), the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one (assuming 'positive' ranks higher than 'negative').
- <u>https://en.wikipedia.org/wiki/Receiver_operating_characteristic</u>

Example ROC Plot

Classification Method

- Logistic Regression (Generalized linear regression model with binary responses)
 - <u>https://en.wikipedia.org/wiki/Logistic_regressio</u>
 <u>n</u>

Logistic Regression

Logistic Regression

•
$$l_{\text{LogOdds}} = \log\left(\frac{p}{1-p}\right) =$$

 $X\beta; p = Prob(Y = 1)$
• $p = \frac{1}{1+e^{-X\beta}} = \sigma(X\beta),$
Sigmoid function of $X\beta$

Elastic-Net Penalized Regression

 Penalized regression with a combined L1 penalty (LASSO) and L2 penalty (Ridge) on coefficients

$$\min_{\beta_0,\beta} \frac{1}{N} \sum_{i=1}^N w_i l(y_i, \beta_0 + \beta^T x_i) + \lambda \left[(1-\alpha) ||\beta||_2^2 / 2 + \alpha ||\beta||_1 \right],$$

- Variable Selection for using L1 penalty (LASSO)
- Account for Highly Correlated variables for using L2 penalty (Ridge)
- Need to tune penalty parameters λ , α by cross validation
- β_0 , β will be estimated by using the above objective function for each unique pair of parameter values of λ , α

Elastic-Net Penalized Regression

• R package "glmnet"

- Fits a generalized linear model via penalized maximum likelihood. The regularization path is computed for the lasso or elastic-net penalty at a grid of values for the regularization parameter lambda.
- The algorithm is extremely fast, and can exploit sparsity in the input matrix x.
- It fits linear, logistic and multinomial, Poisson, and Cox regression models.

https://web.stanford.edu/~hastie/glmnet /glmnet_alpha.html#top

R package *caret*

R package caret

- The caret package (Classification And REgression Training) is a set of functions that attempt to streamline the process for creating predictive models.
- Integrates almost all Machine Learning models
- The package contains tools for:
 - data splitting (training vs. test)
 - pre-processing (quality control, imputing missing values)
 - feature selection
 - model tuning using resampling
 - variable importance estimation (R function "varImp()")
- <u>https://topepo.github.io/caret/index.html</u>

Example dataset : Cleveland heart disease

Name	Data Type	Description
age	continuous	age in years
sex	binary	1 = male; 0 = female
ср	categorical	chest pain type – 1: typical angina; 2: atypical angina; 3: non-anginal pain; 4: asymptomatic
trestbps	continuous	resting blood pressure (in mm Hg on admission to the hospital)
chol	continuous	serum cholesterol in mg/dl
fbs	binary	(fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
restecg	categorical	resting electrocardiograph results – 0: normal; 1: having ST-T wave abnormality; 2: showing probable or definite left ventricular hypertrophy by Estes' criteria
thalach	continuous	maximum heart rate achieved
exang	binary	exercise induced angina (1 = yes; 0 = no)
oldpeak	continuous	ST depression induced by exercise relative to rest
slope	categorical	the slope of the peak exercise ST segment- 1: up sloping; 2: flat; 3: down sloping
ca	continuous	number of major vessels (0-3) colored by fluoroscope
thal	categorical	Thallium heart scan $-3 =$ normal; $6 =$ fixed defect; $7 =$ reversible defect
disease	categorical	absence (0) vs. presence (1, 2, 3, 4)

Study the relationship between resting blood pressure would affect heart disease presence

Lattice Graph with Four Continuous Variables

age, resting blood pressure (trestbps), cholesterol (chol), maximum heart rate (thalach)

Partition Training and Test Data

Data splitting

Exclude samples with NAs
dim(cleveland)

[1] 303 15

cleveland <- na.omit(cleveland)
dim(cleveland)</pre>

[1] 297 15

Resample1

1

2

3

4

5

7
Setup Arguments for Model Training

```
## set model training parameters
fitControl <- trainControl(## 5-fold CV
                           method = "cv",
                           number = 5,
                           ## Estimate class probabilities
                           classProbs = TRUE,
                           ## Evaluate performance using
                           ## the following function
                           summaryFunction = twoClassSummary)
```

Train the classification model by "glmnet" method

```
## Train the classification model by "glmnet" method
glmnet.fit <- train(HD ~ age + sex + cp + trestbps + chol +
                      fbs + restecg + thalach + exang + oldpeak +
                      slope + ca + thal , data = cleveland[trainIndex_2class, ],
                 method = "glmnet",
                 trControl = fitControl,
                 preProc = c("center", "scale"),
                 ## set tuning parameter grid
                 tuneGrid = expand.grid(alpha = seq(0, 1, length.out = 5),
                        lambda = c(0.01, 0.1, 0.2)),
                 ## Specify which metric to optimize
                 metric = "ROC")
print(glmnet.fit)
```

Trained classification model by "glmnet" method

glmnet ## ## 208 samples ## 13 predictor 2 classes: 'Control', 'HeartDisease' ## ## ## Pre-processing: centered (18), scaled (18) ## Resampling: Cross-Validated (5 fold) ## Summary of sample sizes: 167, 165, 167, 167, 166 ## Resampling results across tuning parameters: ## ## lambda ROC alpha Sens Spec ## 0.00 0.01 0.9282505 0.8857708 0.8331579 ## 0.00 0.10 0.9323653 0.8853755 0.8326316 ## 0.00 0.20 0.9322987 0.8940711 0.8010526 0.25 0.01 0.9258956 0.8857708 0.8331579 ## 0.25 0.10 ## 0.9337071 0.8940711 0.7910526 0.25 0.20 0.9283961 0.9205534 0.7805263 ## 0.50 0.01 0.9277221 0.8857708 0.8331579 ## ## 0.50 0.10 0.9246744 0.8944664 0.7910526 0.50 0.20 0.9155419 0.9122530 0.7600000 ## ## 0.75 0.01 0.9295070 0.8857708 0.8331579 0.75 0.10 0.9207177 0.9035573 0.7910526 ## ## 0.75 0.20 0.9118848 0.9296443 0.6652632 ## 1.00 0.01 0.9299854 0.8857708 0.8331579 1.00 0.10 0.9132120 0.8948617 ## 0.7600000 ## 1.00 0.20 0.8836530 0.9470356 0.4689474

ROC was used to select the optimal model using the largest value.
The final values used for the model were alpha = 0.25 and lambda = 0.1.

Plot tuning results
trellis.par.set(caretTheme())
plot(glmnet.fit)

Parameter Tuning Results

^{##} Best tuned parameters
glmnet.fit\$bestTune

	alpha	lambda
5	0.25	0.1

Predictor Importance

Prediction in Test Data

true.class <- cleveland\$HD[-trainIndex_2class]
head(true.class)</pre>

[1] Control Control HeartDisease HeartDisease Control
[6] HeartDisease
Levels: Control HeartDisease

Predict labels
pred.class.glmnet <- predict(glmnet.fit, newdata = cleveland[-trainIndex_2class,])
Confusion Matrix
confusionMatrix(pred.class.glmnet, true.class)</pre>

Confusion Matrix and Statistics ## ## Reference Control HeartDisease ## Prediction Control ## 44 11 ## HeartDisease 30 4 ## ## Accuracy : 0.8315 ## 95% CI : (0.7373, 0.9025) No Information Rate : 0.5393 ## ## P-Value [Acc > NIR] : 6.345e-09## ## Kappa : 0.6565 ## ## Mcnemar's Test P-Value : 0.1213 ## ## Sensitivity : 0.9167 ## Specificity : 0.7317 ## Pos Pred Value : 0.8000 ## Neg Pred Value : 0.8824 Prevalence : 0.5393 ## Detection Rate : 0.4944 ## ## Detection Prevalence : 0.6180 ## Balanced Accuracy : 0.8242 ## ## 'Positive' Class : Control

ROC Plot for Prediction Results

Assignment 9 Tasks 1-4

Unsupervised Learning

Biomedical Research Problems

- Data quality assessment
 - Clustering samples according to their ancestry
 - Clustering sequence samples
- Clustering genes or samples using bulk RNAseq data
- Clustering single cells using single cell RNAseq (scRNAseq) data

RNA-Seq Data

- Gene expression Quantitative Traits
 - Profiled by RNA sequencing (RNA-seq)
 - CPM (Counts Per Million) per gene
 - Count up all the read counts in a sample (library size) and divide this number by 1,000,000. This is your "per million" scaling factor.
 - Divide the read counts per gene by the "per million" scaling factor. This gives you CPM.
- 20K ~ 25K genes in human genome
- Bulk RNA-seq; scRNAseq

Transcription

https://www.thoughtco.com/dna-transcription-373398

Profile Gene Expression Levels by RNA-sequencing

Example RNA-Seq Data Example RNA-Seq data from: David K. Lau et. al., 2019. Genomic Profiling of Biliary Tract Cancer Cell Lines Reveals Molecular Subtypes and Actionable Drug Targets. PMID: 31731200 ; DOI: 10.1016/j.isci.2019.10.044

- Samples from 20 biliary track cancer cell lines were profiled for gene expression data by RNA sequencing
- 24222 genes in the raw data

Inspecting Raw RNA-Seq Data

head(RNAseq_dt)

##		RefSe	q EGI1	G415 H	HUCCT1	HUH28	MZCH	42	NOZ	OCUG1	0Z	SKCHA1	SNU1079)
##	1	NM_00001	4 1	0	10	25	893	35	1	0	1	3	6)
##	2	NM_00001	5 4	0	1	0		5	0	0	0	2	3	3
##	3	NM_00001	7 120	154	132	46	24	40	163	47	188	195	293	3
##	4	NM_00001	9 444	1246	467	426	3	50 3	1245	470	286	783	843	3
##	5	NM_00002	0 0	250	1	0	8	85	4	0	0	0	39)
##	6	NM_00002	1 2373	1989	2648	796	10	83	958	933	1539	2454	1555	5
##		SNU1196	SNU245	SNU308	3 SNU47	8 SNU	869 T	FK1	TGBO	C14TKB	TGBC	18TKB T	GBC2TKB	TKKK
##	1	6	0	() 5	8	2	0		3		1	185	0
##	2	1	2	-	L	1	0	2		4		1	2	5
##	3	411	497	213	L 16	0	161 3	369		354		212	99	344
##	4	418	175	586	5 85	4	712	740		751		604	451	1034
##	5	2	0		2	2	5	4		27		1	0	0
##	6	1618	1539	1423	l 128	1	525 2	151		1158		1590	804	1339

Normalize Raw RNA-Seq Data

apply(RNAseq_matrix, 2, sum)

##	EGI1	G415	HUCCT1	HUH28	MZCHA2	NOZ	0CUG1	0Z
##	12480812	14289644	11524427	14247144	12296380	13698008	13120204	11866325
##	SKCHA1	SNU1079	SNU1196	SNU245	SNU308	SNU478	SNU869	TFK1
##	13501752	11876625	12732950	10469013	13972069	11309785	12500489	15414668
##	TGBC14TKB	TGBC18TKB	TGBC2TKB	TKKK				
##	13224759	10735498	11619162	11487514				

- Summarizing read counts per column/sample gives us the library size. The total number of mapped read counts per sample.
- Various library sizes make the raw read counts per gene are not comparable across all samples/cell-lines.
- Need to Normalize read counts to Counts Per Million (CPM)

Get RNA-Seq Data in CPM

class(RNAseq_matrix)	<pre>apply(RNAseq_CPM, 2, sum)</pre>								
## [1] "data.frame"	##	EGI1	G415	HUCCT1	HUH28	MZCHA2	NOZ	0CUG1	0Z
RNAseq_CPM <- cpm(RNAseq_matrix) class(RNAseq_CPM)	## ## ##	1e+06 SKCHA1 1e+06	1e+06 SNU1079 1e+06	1e+06 SNU1196 1e+06	1e+06 SNU245 1e+06	1e+06 SNU308 1e+06	1e+06 SNU478 1e+06	1e+06 SNU869 1e+06	1e+06 TFK1 1e+06
## [1] "matrix" "array"	## T ##	GBC14TKB 1e+06	TGBC18TKB 1e+06	TGBC2TKB 1e+06	TKKK 1e+06	20.00	10.00	20.00	20.00

head(RNAseq_CPM)

##		EGI1	G415	HUCCT1	HUH28	MZCHA2	NOZ	
##	NM_000014	0.08012299	0.00000	0.86772210	1.754738	726.6366199	0.07300332	
##	NM_000015	0.32049197	0.00000	0.08677221	0.00000	0.4066237	0.00000000	
##	NM_000017	9.61475904	10.77704	11.45393172	3.228717	19.5179394	11.89954043	
##	NM_000019	35.57460845	87.19601	40.52262208	29.900730	28.4636617	90.88912782	
##	NM_000020	0.0000000	17.49519	0.08677221	0.000000	6.9126035	0.29201326	
##	NM_000021	190.13186001	139.19171	229.77281213	55.870847	88.0747017	69.93717627	
##		0CUG1	0Z	SKCHA1	SNU1079	SNU1196	SNU245	
##	NM_000014	0.000000	0.08427209	0.2221934	0.000000	0.4712184	0.00000	
##	NM_000015	0.000000	0.00000000	0.1481289	0.252597	0.0785364	0.19104	
##	NM_000017	3.582261 15	5.84315279	14.4425701	24.670308	32.2784586	47.47343	
##	NM_000019	35.822614 24	1.10181754	57.9924739	70.979761	32.8282134	16.71600	
##	NM_000020	0.000000	0.00000000	0.000000	3.283761	0.1570728	0.00000	
##	NM_000021	71.111699 129	9.69474542	181.7541901	130.929452	127.0718883	147.00526	
##		SNU308	SNU4	78 SNU8	69 -	FFK1 TGBC14	ГКВ	
##	NM_000014	0.00000000	5.128302	62 0.15999	37 0.000	0000 0.22684	472	
##	NM_000015	0.07157136	0.088419	01 0.00000	00 0.129	7466 0.30246	530	
##	NM_000017	15.10155726	14.147041	70 12.87949	62 23.9382	2386 26.7679	736	
##	NM_000019	41.94081778	75.509835	07 56.95777	18 48.0062	2237 56.78742	243	
##	NM_000020	0.14314272	0.176838	02 0.39998	44 0.2594	4931 2.04162	251	
##	NM_000021	101.70290456	113.353171	61 121.99522	75 139.5424	4151 87.56303	323	
##		TGBC18TKB	TGBC2TKB	ТККК				
##	NM_000014	0.09314892	15.9219744	0.000000				
##	NM_000015	0.09314892	0.1721295	0.4352552				
##	NM_000017	19.74757016	8.5204079	29.9455565				
##	NM_000019	56.26194518	38.8151917	90.0107717				
##	NM_000020	0.09314892	0.000000	0.000000				
##	NM_000021	148.10677623	69.1960401	116.5613378				

Data Cleaning : filtering out genes with low CPM

- Low read counts are more likely to add noises.
- As a general rule, a good threshold can be chosen for a CPM value that corresponds to 10 raw read counts.

Count	СРМ
1	1
10	1
20	1
	Count 1 10 20

Data Cleaning : filtering out genes with low CPM in any samples

thresh <- RNAseq_CPM > 1
class(thresh)

[1] "matrix" "array"

head(thresh)

##	EGI1 G415	HUCCT1	HUH28	MZCHA	2 NO	Z OCUG1	0Z	SKCHA1	SNU1079
## NM_000014	FALSE FALSE	FALSE	TRUE	TRU	E FALS	E FALSE	FALSE	FALSE	FALSE
## NM_000015	FALSE FALSE	FALSE	FALSE	FALS	E FALS	E FALSE	FALSE	FALSE	FALSE
## NM_000017	TRUE TRUE	TRUE	TRUE	TRU	E TRU	E TRUE	TRUE	TRUE	TRUE
## NM_000019	TRUE TRUE	TRUE	TRUE	TRU	E TRU	E TRUE	TRUE	TRUE	TRUE
## NM_000020	FALSE TRUE	FALSE	FALSE	TRU	E FALS	E FALSE	FALSE	FALSE	TRUE
## NM_000021	TRUE TRUE	TRUE	TRUE	TRU	E TRU	E TRUE	TRUE	TRUE	TRUE
##	SNU1196 SNU	245 SNU	308 SN	U478 S	NU869	TFK1 T	GBC14TK	B TGBC	18TKB
## NM_000014	FALSE FA	LSE FA	LSE	TRUE	FALSE	FALSE	FALS	E I	FALSE
## NM_000015	FALSE FA	LSE FA	LSE F	ALSE	FALSE	FALSE	FALS	E I	FALSE
## NM_000017	TRUE T	RUE T	RUE	TRUE	TRUE	TRUE	TRU	E	TRUE
## NM_000019	TRUE T	RUE T	RUE	TRUE	TRUE	TRUE	TRU	E	TRUE
## NM_000020	FALSE FA	LSE FA	LSE F	ALSE	FALSE	FALSE	TRU	E I	FALSE
## NM_000021	TRUE T	RUE T	RUE	TRUE	TRUE	TRUE	TRU	E	TRUE
##	TGBC2TKB T	KKK							
## NM_000014	TRUE FA	LSE							
## NM_000015	FALSE FA	LSE							
## NM_000017	TRUE T	RUE							
## NM_000019	TRUE T	RUE							
## NM_000020	FALSE FA	LSE							
## NM_000021	TRUE T	RUE							

RNAseq_CPM.keep <- RNAseq_CPM[keep,]
class(RNAseq_CPM.keep)</pre>

[1] "matrix" "array"

dim(RNAseq_CPM.keep)

[1] 10034 20

head(RNAseq_CPM.keep)

##		EGI1	G41	5 НИССТ	1 HUH2	8 MZCHA	2 N02	Ζ
##	NM_000017	9.614759	10.77703	5 11.4539	3.22871	7 19.5179	4 11.89954	1
##	NM_000019	35.574608	87.196014	4 40.5226	2 29.90073	0 28.4636	6 90.88913	3
##	NM_000021	190.131860	139.19171	1 229.7728	81 55.87084	7 88.0747	0 69.93718	3
##	NM_000026	43.747154	77.95855	5 52.4971	9 48.43075	9 53.1863	88 89.79408	3
##	NM_000027	17.226443	7.55792	1 21.1724	2 17.68775	6 19.1926	64 14.67367	7
##	NM_000028	49.836501	52.975428	8 32.1057	2 58.11691	1 114.2612	13.87063	3
##		0CUG1	0Z	SKCHA1	SNU1079	SNU1196	SNU245	SNU308
##	NM_000017	3.582261	15.84315	14.44257	24.67031	32.27846	47.47343	15.10156
##	NM_000019	35.822614	24.10182	57.99247	70.97976	32.82821	16.71600	41.94082
##	NM_000021	71.111699	129.69475	181.75419	130.92945	127.07189	147.00526	101.70290
##	NM_000026	71.797664	48.96208	108.57850	67.44340	78.77200	48.33311	44.37424
##	NM_000027	35.060430	29.15814	47.77158	26.01749	13.82241	13.18176	12.31027
##	NM_000028	46.035870	35.05719	46.51248	34.35319	26.38823	34.86480	646.71882
##		SNU478	SNU869	TFK1	TGBC14TKB	TGBC18TKB	TGBC2TKB	ТККК
##	NM_000017	14.14704	12.87950	23.93824	26.76797	19.74757	8.520408	29.94556
##	NM_000019	75.50984	56.95777	48.00622	56.78742	56.26195	38.815192	90.01077
##	NM_000021	113.35317	121.99523	139.54242	87.56303	148.10678	69.196040	116.56134
##	NM_000026	138.19891	108.95574	68.18181	39.62265	44.89778	49.745412	35.69092
##	NM_000027	18.56799	14.87942	22.57590	14.14014	59.14956	46.561017	17.58431
##	NM_000028	65.87216	39.75844	72.52832	57.24112	28.13097	89.507316	54.58100

Data Visualization : Histogram plot per sample

ggplot(data.frame(RNAseq_CPM.keep), aes(x = EGI1)) + geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Normally distributed?

Log2 Transform

RNAseq_CPM.keep.log2 <- cpm(RNAseq_CPM.keep, log = TRUE)
head(RNAseq_CPM.keep.log2)</pre>

EGI1G415HUCCT1HUH28MZCHA2NOZOCUG1OZSKCHA1SNU1079NM_0000173.7480583.8161373.9655492.6812424.6400843.9188292.6792214.3409834.2462744.929370NM_0000195.4436316.6102705.6278655.3380955.1420776.6481185.4398344.8891976.1145356.381345NM_0000217.7985357.2723008.0750716.2014726.7068176.2799216.3907117.2231927.7296917.246363NM_0000265.7276966.4527235.9860306.0021925.9997796.6310336.4041845.8538756.9969106.309694NM_0000274.4762083.4009904.7512264.6360764.6180844.1791825.4104645.1444585.8450045.000441NM_0000285.9080595.9130485.3094066.2565967.0750754.1085235.7847085.3944395.808075.376097

Data Transformation: Log2

ggplot(data.frame(RNAseq_CPM.keep.log2), aes(x = EGI1)) + geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Normally distributed?

Unsupervised Learning

- Association: An association rule learning problem is where you want to discover rules that describe large portions of your data
 - Test if people with genetic variation X are more likely to have disease Y
 - Test if a treatment will be effective in clinical trials
- Clustering: A clustering problem is where you want to discover the inherent groupings in the data
 - Grouping cells with respect different characteristics

Volcano Plot

-log10(p-value) 0--10 -5 5 10 Log2FC DE 🔹 DOWN NO OP

Association Study: Differential Gene Expression Analysis

Clustering : Ducks vs. Not Ducks

Clustering Methods

1. Hierarchical Clustering

- Build a hierarchy from the bottom-up and doesn't require us to specify the number of clusters beforehand.
- Put each data point in its own cluster.
- Identify the closest two clusters and combine them into one cluster.
- Repeat the above step till all the data points are in a single cluster.
- 2. Uniform Manifold Approximation and Projection (UMAP)
 - Dimension reduction. Projecting high dimensional features to 2-dimension
 - Competitive with t-SNE method. UMAP preserves more of the global structure with superior run time performance.
 - Widely used in single cell RNAseq studies

1. Hierarchical Clustering

There are a few ways to determine how close two clusters are:

- <u>Complete linkage clustering</u>: Find the maximum possible distance between points belonging to two different clusters.
- <u>Mean linkage clustering</u>: Find all possible pairwise distances for points belonging to two different clusters and then calculate the average.

Complete linkage and **mean linkage** clustering are the ones used most often.

Data Visualization: Heatmap for highly variable genes

SNU308 SNU245 SNU478 MZCHA2 HUCCT1 SKCHA1 EGI1 SNU869 G415 HUH28 OCUG1 TKKK SNU1079 ZON **GBC2TKB 3BC14TKB** TFK1 20 **3BC18TKB** SNU1196

Cluster Dendrogram

dist(t(RNAseq_CPM.keep.log2)) hclust (*, "complete")

Using complete linkage clustering
clusters_complete <- hclust(dist(t(RNAseq_CPM.keep.log2)), method = "complete")
plot(clusters_complete)</pre>

How to visualize sample relationship using all gene expression data?

- 10034 genes left after filtering out low expressed ones
- Still high dimensional data
- Project high dimensional data to two dimensions (dimension reduction), and then a scatter plot will work.
- How?

Original 3D Data

2D UMAP Projection

2. UMAP (Uniform Manifold Approximation and Projection)

Figure 5: UMAP projections of a 3D woolly mammoth skeleton (50k points, 10k shown) into 2 dimensions, with various settings for the n_neighbors and min_dist parameters.

UMAP : Dimension Reduction

- Uses local Manifold Approximations and patches together their local fuzzy simplicial set representations to construct a topological representation of the high dimensional data.
- Given some low dimensional representation of the data, a similar process can be used to construct an equivalent topological representation.
- UMAP then optimizes the layout of the data representation in the low dimensional space, to minimize the cross-entropy between the two topological representations.
- <u>https://pair-code.github.io/understanding-umap/</u>

UMAP t-SNE UMAP: Dimension Reduction 3D Pullover Ankle boot T-shirt/top Sandal Sneaker Shirt Coat Dress Trouser Bag

Figure 2: Dimensionality reduction applied to the Fashion MNIST dataset. 28x28 images of clothing items in 10 categories are encoded as 784-dimensional vectors and then projected to 3 using UMAP and t-SNE.

Clustering RNAseq Samples by UMAP

Generate UMAP data object

RNAseq.umap = umap(t(RNAseq_CPM.keep.log2))

RNAseq.umap

umap embedding of 20 items in 2 dimensions
object components: layout, data, knn, config

head(RNAseq.umap\$layout)

EGI1	-0.4888411	-0.8272848
G415	1.4069668	0.1008201
HUCCT1	-0.0836996	-0.3807546
HUH28	1.3468850	-0.9633277
MZCHA2	0.3247851	-0.8221387
NOZ	1.0647610	0.5263747

Clustering RNAseq Samples by UMAP

References

- Towards Data Science Blogs: <u>https://medium.com/@NotAyushXD</u>
- Kaggle: <u>https://www.kaggle.com/</u>
- Introduction to R library "caret"
 - <u>https://topepo.github.io/caret/index.html</u>
- Extra Resources: https://hbctraining.github.io/main/
- Clustering Single Cells with scRNAseq Data by UMAP:
 - <u>https://hbctraining.github.io/scRNA-seq_online/schedule/links-to-lessons.html</u>
Assignment 9: Tasks 5-6

