Structure Random Pattern

11/14/2024 (Week 12)

P rn t t. I t Jingjing Yang, PhD
e r u a I O n es Associate Professor of Human Genetics

Jingjing.yang@emory.edu

mailto:Jingjing.yang@emory.edu

Hypothesis Test

* Testing Null (Hy) vs. Alternative (H,) hypothesis
* Choose an appropriate Test Statistic

* P-value: The probability of getting a test statistic as or more extreme than the one from
your current data, when the null hypothesis is true.

e Option 1: Calculate from the known test statistic distribution (cdf/pdf) under the null
hypothesis, e.g., Standard Normal distribution N(O, 1), Student’s t distribution, F
distribution, Chi-square distribution

* For example, two-sample t-test statistic
T — m_ﬁz
S/Nn
e Testing if two groups of data have the same mean
Ho: t1= Hy Vs. Hyt lh# Uy
e Option 2: Permutation!

Permutation Test

* Permutation test: obtaining p-value by permuting the current
observed data to simulate null scenarios

 wilcox.test() for the Wilcoxon-Mann-Whitney non-parametric
statistical test (based on ranks)

* mantelhaen.test() for the Cochran-Mantel-Haenszel y* test in R
» Tests for any association between the variables across all strata.

* A permutation test gives a simple way to compute the sampling
distribution for any test statistic, under the null hypothesis

 Example NULL: A set of genetic variants has absolutely no effect on the
outcome.

Permutation Test Procedure

e Generate a large number of data sets under the null hypothesis by permuting the
observed data

* If the null hypothesis is true, changing the exposure would have no effect on
the outcome.

* If the null hypothesis is true, the shuffled data sets should look like the real
data, otherwise they should look different from the real data.

e Permute outcome variable such as group labels (e.g., for testing mean
difference between two groups) or measurements, and calculate test statistic
values with permuted data

e Calculate real test statistic value from observed data

* The ranking of the real test statistic value among the shuffled test statistic values
gives a permutation test p-value

Example 1: test
two-group mean
difference

e Simulate 3000 samples
with 1500 not carrying a
mutation and 1500
carrying a mutation.

* A null phenotype "null.y’
and an alternative
phenotype "alt.y vectors
were simulated from "N(O,
1) and "N(carrier/2, 1),
respectively.

set.seed(2021)

carrier <- rep(c(@,1), c(1500,1500))

null.y <- rnorm(3000)

alt.y <- rnorm(3000, mean = carrier/2)

null_dt <- data.frame(carrier = factor(carrier), null.y)

ggplot(null_dt, aes(x = null.y, fill = carrier)) +
geom_histogram(aes(y = stat(density)))

alt_dt <- data.frame(carrier = factor(carrier), alt.y)

ggplot(alt_dt, aes(x = alt.y, fill = carrier)) +
geom_histogram(aes(y = stat(density)))

Simulated Null and Alternative Phenotype Vectors

0.8 0.8

0.6- 0.6-
%‘ carrier %‘ carrier
c 04 o = 0.4 o
9 K k3 o 1

0.2- 0.2-

0.0- - . | | | 0.0- . . . —

4 2 0 2 4 25 0.0 2’5 5.0
null.y alt.y

Standard two sample t test results

t.test{null.y ~ carrier, var.equal = TRUE)

##

Two Sample t-test

##

data: null.y by carrier

t = -0.43073, df = 2998, p-value = 0.6667
alternative hypothesis: true difference 1n means between group @ and group 1 1s not equal
to @

95 percent confidence interval:

-0.08886870 ©.085685645

sample estimates:

mean 1n group @ mean 1in group 1

0.005983959 0.021990082

Standard two sample t test results

t.test(alt.y ~ carrier, var.equal = TRUE)

##

Two Sample t-test

##

data: alt.y by carrier

t = -12.241, df = 2998, p-value < 2.2e-16
alternative hypothesis: true difference in means between group @ and group 1 1s not equal
to @

95 percent confidence interval:

-0.5223674 -0.3781248

sample estimates:

mean 1n group @ mean in group 1

9.85789964 0.50814578

Permute carrier group status by sample()

set.seed(2021)
carrier_permute <- sample(carrier) # permute group labels

ggplot(data.frame(carrier = factor(carrier_permute), null.y),
aes(x = null.y, fill = carrier)) +
geom_histogram(aes(y = stat(density)))

ggplot(data.frame(carrier = factor(carrier_permute), alt.y),
aes(x = alt.y, fill = carrier)) +
geom_histogram(aes(y = stat(density)))

Permute carrier group status

4) 0 5 4 4 P 0 5 4
null.y alt.y

carrier = 0 & 1 carrier @ 0 W 1

Standard two sample t-test results with permuted group labels

t.test(null.y ~ carrier_permute, var.equal = TRUE)

##

Two Sample t-test

##

data: null.y by carrier_permute

t = -1.6776, df = 2998, p-value = 0.09352
alternative hypothesis: true difference in means between group @ and group 1 1s not equal
to @

95 percent confidence interval:

-0.13514488 0.81051642

sample estimates:

mean 1n group @ mean 1n group 1

-0.01717009 0.04514414

Standard two sample t-test results with permuted group labels

t.test(alt.y ~ carrier_permute, var.equal = TRUE)

##

Two Sample t-test

##

data: alt.y by carrier_permute

t = 0.0851053, df = 2998, p-value = 0.9593
alternative hypothesis: true difference in means between group @ and group 1 1s not equal
to @

95 percent confidence 1interval:

#4# -0.07197736 0.07582579

sample estimates:

mean 1in group @ mean 1in group 1

0.2839848 0.2820606

Permutation test: two-group mean difference

e Consider statistic that is
the mean difference
between two groups

— T~ mean.diff <- function(x,y) {
:udiff = U U2 xstat <- sample(x)
return(mean(y[xstat == 1]) - mean(y[xstat == 0]))

}

* Calculate the statistic
value for each permuted

data set set.seed(2021)

many.null <- replicate(100@, mean.diff(carrier, null.y))

e Permute group labels for melm:.alt -:;I:phc:t:{lgﬁ, Tealzidlfﬂﬂzlr':ei, alt.yl{l

1000 times plot_mean_diff <- data.frame(null.mean. 11 = many.null,
alt.mean.diff = many.alt)

Permutation test: two-group mean difference

Construct the numeric distribution of (¢

obs.null.mean.diff = mean(null.y[carrier == 1]) - mean(null.y[carrier == 0])
obs.alt.mean.diff = mean(alt.yl[carrier == 1]) - mean(alt.ylcarrier == @])

ggplot(plot_mean_diff, aes(x = null.mean.diff)) +
geom_histogram(aes(y = stat(density))) +
geom_vline(xintercept = c(abs(obs.null.mean.diff), -abs(obs.null.mean.diff)),
size = 1, col = "red") +
labs(title = paste("obs.null.mean.diff =", round(abs(obs.null.mean.diff), 3)))

Permutation test: two-group mean difference

* Calculate the p-value from the numeric distribution: two-side

obs.null.mean.diff = 0.016 obs.alt.mean.diff = 0.45
10.0-
9;
7.5
> 2
6 % 50-
% o
3. 2.51
0.0- | . |
0- . | . | —— -0.25 0.00 0.25
-0.10 -0.05 0.00 0.05 0.10 0.1f alt.mean.diff

null.mean.diff

Read line: + absolute value of observed mean difference

Permutation test: two-
group mean difference

e Calculate the p-value from the
numeric distribution

e Count the total number of
permutations that result in two-
group mean differences more
extreme than the observed mean
difference, and then divide by the
total number of permutations

sum(abs(many.null) > abs(obs.null.mean.diff))

[1] 694

sum(abs(many.null) = abs(obs.null.mean.diff)) / 1000

[1] 0.694

p_null = mean(abs(many.null) > abs(obs.null.mean.diff))

p_null

[1] 0.694

sum(abs(many.alt) > abs(obs.alt.mean.diff))

[1] @

sum({abs(many.alt) > abs(obs.alt.mean.diff)) / 1000

[1] @

p_alt = mean(abs(many.alt) > abs(obs.alt.mean.diff))
p_alt

[1] @

Permutation p-value

Now consider a permutation test that randomly permutes the data B times (instead of all (]:) times). A
permutation test approximates a randomization test. In fact, the permutation test can be analyzed using the
following binomial random variable:

X p = # permutations out of B that give a more extreme value than the observed test statistic
Xp ~ Bin(pR,B)

SE(XP):\/pR(ll;pR)%\/ﬁp(lgﬁp)

Consider a situation where interest is in a small effect, say p-valuex 0.01. The SE should be less than
0.001.

0.001 = \/(0.01) .(0.99)/B

B = (0.01) - (0.99)/(0.001)?
= 9900

Another way to look at the same problem is to use the estimated p-value = p p= %P to come up with a

confidence interval for pg.

. [pp(1—p
Clforpr ~ pp £ 1.96 pP(TpP)

How many
permutations are
needed if using
signhificance
threshold 0.0017

Example
test
statistics

Data
2 categorical
variables

1 numeric

1 binary

1 numeric

K groups

paired or

repeated measures
regression

time series

Hypothesis Question
diff in prop
ratio of prop
diff in means
ratio of means
diff in medians
ratio of medians
diff in SD
diff in var
ratio of SD or VAR

diff in means

(permute within row)

correlation

no serial corr

Statistic
By — Py or x?
P1/P2
X1-X,
X1/X 2
median; — medians
median; /mediany
81 — S9
$2 _ g2
s1/82
S ni(Xi—X)2or
F stat

X1—-X»

least sq slope

lag 1 autocross

Depending on the data, hypotheses, and original data collection structure (e.g., random sampling vs

random allocation), the choice of statistic for the permutation test will vary.

Pros and Cons of Permutation test

Require no known test statistic distribution under the
null hypothesis

No distribution assumptions for the observed data.
Preferred with small sample sizes.

Useful when there is no known distribution, aka,
analytical pdf/cdf formula, for the test statistic under
the null hypothesis

Give the same p-value as parametric tests such as t-
test, when data satisfy the assumptions of parametric
tests

Computationally expensive (could consider a flexible
number of permutations per test or parallel
computing)

Need to increase the number of permutations
according to the significance level

When permutation test is useful

* Suppose we test additive effects of 8 SNPs, one at a time, and we want to know if
the most significant association is real.

* For each SNP, the Z-statistic from a logistic regression model has a Normal
distribution.

* We need to know the distribution of the most extreme of eight Z-statistics.

* This is not a standard distribution, but a permutation test is still straightforward.
How?

Permutation for minimum order statistic

* Consider a binary disease phenotype with values “0” for control and values “1”
for disease

» Test the association between a gene and the binary disease phenotype
* A total of eight SNPs within the test gene

» Test statistic: minimum p-value of single variant tests across all eight SNPs, i.e.,
maximum abs(Z-score) of single variant tests across all eight SNPs

* Analytical distribution for this minimum order statistic is not trivial, as maximum
abs(Z-score) no longer follows a N(O, 1) distribution under the null

Simulate a binary disease phenotype and genotype data of eight SNPs

set.seed(2021)
Pheno <- factor(rep(@:1,each=100))

* Simulate 200 samples with 100
SNP_dat <- data.frame(SNPl=rbinom(200,2,.1),

controls and 100 cases SNP2=rbinom(200,2,.2),SNP3=rbinom(200,2,.2),
SNP4=rbinom(200,2,.4),SNP5=rbinom(200,2,.1),

* Simulate genotype data of eight SNP6=rbinom(200, 2, .2), SNP7=rbinom(200,2,.2).
SNP8=rbinom(200,2,.4)

SNPs with minor allele \
frequency (0.1, 0.2, 0.2, 0.4,
0.1, 02, 02, 04) SNP_dat_plot <— melt(SNP_dat, value.name = "Genotype", variable.name = "SNP")

SNP_dat_plot$Pheno <- rep(Pheno, B8)
ggplot(SNP_dat_plot, aes(x = factor(SNP), y = Genotype, fill = factor(Pheno))) +
geom_boxplot() + labs(fill = "Pheno", x = NULL) +
theme(axis.text.x=element_text(angle=45, vjust = 0.5))

N
s

Simulate a
binary disease
phenotype and
genotype data
of eight SNPs

—
-k

Genotype
o

=
i

Q“" Q"J Q"‘ Q“ﬁ <z“° &R
> & & & & & o

Pheno 2 0 & 1

s this a null
scenario?

Calculate Z-score statistic for one SNP
oneZ<-function(outcome, snp){
model <- glm(outcome~snp, family=binomial())
return(coef(summary(model)) ["snp","z value"])

}

Observed # Calculate the maximum absolute value of Z-score statistics for all SNPs

maxZ<-function(outcome, snps){
allZs <— sapply(snps, function(snp) oneZ({outcome, snp))

minimum p- return(max(abs(allZs)))
}
value

Minimum p-value of eight single variant test
obs.max.Z <- maxZ(Pheno, SNP_dat)
p.min <— 2 * pnorm(obs.max.Z, lower.tail = FALSE)

p.min

[1] 0.001692519

* Generating data sets under null hypothesis by

Pe.rr.nUtatmn for permuting the disease phenotype
mln.| m.um order * No association between the test disease
statistic phenotype and gene

* AKA, disease phenotype is independent of all
eight SNPs in the gene

set.seed(2021)
many.permZ <— replicate(1000, maxZ(sample(Pheno), SNP_dat))
permZ_plot <=— data.frame(permZ = many.permZ, normal_density = dnorm{many.permZ))

ggplot(permZ_plot, aes(x = permZ)) +
geom_histogram(aes(y = stat(density))) +
geom_vline(xintercept = c(abs(obs.max.Z)),

size = 2, col = "red") +
geom_line(aes(x = many.permZ, y = dnorm(many.permZ)), size = 2, col = "blue") +
labs(title = paste("obs.max.Z =", round(abs(obs.max.Z), 3)}), x = "Maximum Z-score Statisti

C"}

obs.max.Z = 3.139

Distribution of
permuted maximum Z-

score statistic 09-
e Blue line: N(O, 1) "?O 6-
) : n Y.
density function 5
* Red line: Observed ©
maximum Z-score 0.3
statistic value
0.0

1 2 3
Maximum Z-score Statistic

Permutation test p-value for the maximum Z-score statistic

test p-=value
p.-min.perm <- mean(many.permZ > obs.max.2Z)
p-min.perm

[1] 0.002

When you get
permutation p-value <
0.05 for a set of data
generated under the
null hypothesis!

What dose this mean?

Consider 8 individual tests

Get p-values for all 8 S5NPs
Zscore_8snps <— sapply(SNP_dat, function(snp) oneZ(Pheno, snp)) %% abs()

° Adjus'ung for Zscore_8snps
mu Itlple testing by ## SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8

. ## 3.1394731 0.9885851 ©.3653994 0.92688290 A.8216369 B.3681295 1.9663342 0.7882986
Bonferroni

COFI’eCtIOFI, Wlth pvalue_8snps <— 2 * pnorm(Zscore_8snps, lower.tail = FALSE)
. . o pvalue_8snps
significance level

a = O 05/8 — #i# SNP1 SNP2 SNP3 SNP4 SNP5 SNP6
- . - ## 0.001692519 0.322866168 @0.714813255 0.353987332 0.411283597 0.712776656

0.00625 # SNP7 SNP8

0.049260019 0.430522075
min(pvalue_8snps)

[1] ©.001692519
min(pvalue_8snps) < (8.85 / B)

[1] TRUE

In-Class Activity

R package coin (conditional inference)

* The coin package implements a unified approach to permutation tests providing
a huge class of independence tests for nominal, ordered, numeric, and censored
data as well as multivariate data at mixed scales.

* Provide conditional versions (permutation tests) of classical tests, such as tests
for location and scale problems in two or more samples, independence in two- or
three-way contingency tables, or association problems for censored, ordered
categorical or multivariate data.

* Approximations of the exact null distribution via the limiting distribution
(‘asymptotic’) or conditional Monte Carlo resampling ("approximate’) are
available for every test procedure.

* The exact null distribution is currently available for univariate two-sample
problems only.

R library coin

* Framework was developed by
Strasser and Weber (1999):
theoretical insights of a unified
treatment of a huge class of
permutation tests

* Generic functions for obtaining
statistics, conditional expectation
and covariance matrices as well
as p-value, distribution, density
and quantile functions for the
reference distribution

* Help to extract information
from these objects

e Conveniently interfaced in
the function
independence_test()

General Independence Test

Description
Testing the independence of two sets of variables measured on arbitrary scales.
Usage

53 method for class 'formula'

independence_test(formula, data, subset = NULL, weights = NULL

53 method for class 'table'

independence test(object

53 method for class 'IndependenceProblem’

independence_test(object, teststat = c¢("maximum", "guadratic", "scalar"
distribution = ¢("asymptotic", "approximate”

"exact", "none"

alternative = ¢("two.sided"”, "less", "greater”
xtrafo = trafo, ytrafo = trafo, scores = NULL
check = NULL

Apply " independence test() to Example 1

independence_test(null.y ~ carrier, data = null_dt,

ytrafo = rank_trafo, distribution = "asymptotic") # coin package
#it
Asymptotic General Independence Test
##

data: null.y by carrier (9, 1)
Z = -0.077442, p-value = 0.9383
alternative hypothesis: two.sided

independence_test(alt.y ~ carrier, data = alt_dt,

ytrafo = rank_trafo, distribution = "asymptotic") # coin package
H#i#t
Asymptotic General Independence Test
#it

data: alt.y by carrier (8, 1)
Z = -12.056, p-value < 2.2e-16
alternative hypothesis: two.sided

How dose independence test() work?

* The data are pre-processed along with their transformations

* Deviations from independence are captured by a (possibly
multivariate) linear statistic

e Standardized by conditional expectation and variance, and aggregated
to a final test statistic

e Consider testing the independence between two variables Y and X,
under a certain block structure of the observations (B) — for example,
study centers in a multi-center randomized clinical trial where only a
re-randomization of observations within blocks is admissible.

H,: D(Y|X,B) = D(Y|B)

 Strasser and Weber (1999) suggest deriving scalar test statistics for
testing H, from multivariate linear statistics of the form

k
T=) T;cRM

j=1
Hothorn2008, JSS.

How dose independence test() work?

* The linear statistic for each block is given by

T; = vec (EI 7)w;g(]h[Yi—_}T) € RPY,

The function I(:) is the indicator function and vec denotes the vec operator (which stacks the
columns of a matrix). Here, g : X — RP*! is a transformation of the X measurements and
h: ¥V — R9*! is a transformation of the Y values. The function h(Yi)=h(Yi,(Y1,....Y4s))
is also called influence function and may depend on the full vector of responses (Y1,...,Y,),
however only in a permutation symmetric way, i.e., the value of the function must not depend
on the order in which Yy,...,Y, appear. The case weights w; are assumed to be integer-
valued, indicating that w; observations with realizations Y;, X; and b; are available, with
default w; = 1.

Hothorn2008, JSS.

How dose independence test() work?

The distribution of T depends on the joint distribution of Y and X, which is unknown under
almost all practical circumstances. At least under the null hypothesis one can dispose of
this dependency by fixing X4,..., X, and conditioning on all possible permutations of the
responses Y1q,..., Y, within block j,7 = 1,...,k. The conditional expectation g € RP? and
covariance ¥ € RP?7*PY of T under Hj given all permutations ¢ € S of the responses are
derived by Strasser and Weber (1999) and are given in Appendix A. Having the conditional
expectation and covariance at hand we are able to standardize an observed linear statistic
t € RP (of the form given in Equation 1) and aggregate it to some univariate test statistic
¢ = c(t,p,X). Various choices for c(t,u,) are conceivable, e.g., a quadratic form or a
maximum type statistic (see Section 3). In the latter case, a natural first step is to standardize
each of the pg statistics in t by its expectation and standard deviation:

z = diag(%) /2 (t — p). (2)

1 =Conditional expectation of T under Null
> =Conditional variance-covariance of T under Null Hothorn2008, JSS.

Data Structure

We are provided with n observations (Y;, X;, b;, w;),i = 1,...,n. In addition to variables X,
Y, and b, it is convenient (for example to efficiently represent large contingency tables) to
include case weights w;, defaulting to w; = 1. This data structure is represented by class
‘IndependenceProblem’:

Class ‘IndependenceProblem’

Slot Class
X ‘data,.frame’
y ‘data.frame’

block ‘factor’
weights ‘numeric’

Note that objects of this class implicitly define the null distribution H, and all admissible
permutations of observations within blocks.

Hothorn2008, JSS.

Independence Problems and Linear Statistics

The transformation functions g and h as well as the transformed observations g(X;) and
h(Yi),i =1,...,n, are added to the data structure by extending class ‘IndependenceProblem’:

Class ‘IndependenceTestProblem’
Contains ‘IndependenceProblem’

Slot Class
xtrans ‘matrix’
ytrans ‘matrix’
xtrafo ‘function’
ytrafo ‘function’

The ytrafo and xtrafo slots correspond to the transformations h and g, respectively. The
ith row of the n x ¢ matrix ytrans corresponds to h(Y;). Similarly, the rows of xtrans (n x p)
correspond to g(X;). Note that, in addition to the data, hypothesis and permutation scheme,
the test statistic T is defined by objects of class ‘IndependenceTestProblem’ as well.

In the simplest case of both X and Y being univariate factors at p and ¢ levels, g and h
are the corresponding dummy codings and the linear statistic T is the (vectorized) p x ¢
contingency table of X and Y. In the rats example, the default dummy coding for factor

roup is emploved and a rank transformation (via rank()) is applied to time.
BEORP poye [) op Hothorn2008, JSS.

Derive conditional null distribution

Class Description

"ExactNullDistribution" Exact conditional null distribution (e.g., computed via
the shift algorithm).

"ApproxNullDistribution" Approximation of the exact conditional distribution using

conditional Monte Carlo procedures.
"AsymptNullDistribution" Asymptotic conditional distribution (via multivariate
normal or x? distribution).

For the most important special cases, suitable function generators are provided in coin.
For example, the function approximate (nresample = 1000) returns a Monte Carlo func-
tion that draws nresample (default: 10000) random permutations. Similarly, exact () and
approximate() return functions computing the exact or asymptotic null distributions, re-
spectively. Again, computational details in the computaftion of the null distribution can be
controlled via arguments of the function generators.

Hothorn2008, JSS.

Example: two-sample test (location)

group | time

control | 300 300 300 300 300 300 300 300 300 300 300 300
treatment | 18 22 75 163 271 300 300 300 300 300 300 300

Table 1: The rotarod data: length of time on rotating cylinder by group.

n = 24 rats received a fixed oral dose of a centrally acting
muscle relaxant as active treatment or a saline solvent as
control.

The animals were placed on a rotating cylinder and the
length of time each rat remained on the cylinder was
measured, up to a maximum of 300 seconds.

The rats were randomly assigned to the control and
treatment groups.

A permutation test is the appropriate way to investigate if
the response is independent of the group assignment.

Example: two-sample test (location)

The data are particularly
challenging because of
the many ties in the
(right-censored) response
(19 observations take the
maximal value 300) and
the quasi-complete
separation (smaller
values of time are only
observed in the
treatment group).

data("rotarod", package = "coin")

independence_test(time ~ group, data = rotarod,

ytrafo = rank_trafo, distribution = "exact")
##
Exact General Independence Test
##

data: time by group (control, treatment)
7 = 2.4389, p-value = 0.03727
alternative hypothesis: two.sided

Here, the conditional Wilcoxon-Mann-Whitney test was performed via a rank
transformation of the response, employing the exact distribution for obtaining the

p-value.

* Input argument of distribution = “asymptotic” denotes
Example: two—sample the conditional null distribution of the test statistic can
test (location) be approximated by its asymptotic distribution (default).

independence_test(time ~ group, data = rotarod,

ytrafo = rank_trafo, distribution = "asymptotic") # coin package
#i#
Asymptotic General Independence Test
##

data: time by group (control, treatment)
Z = 2.4389, p-value = 0.01473
alternative hypothesis: two.sided

Example° two-sample * Conditional null distribution of the test statistic can also

) be approximated via Monte Carlo resampling (distribution
teSt (|0C3t|0n) = "approximate").

independence_test(time ~ group, data = rotarod,

ytrafo = rank_trafo, distribution = "approximate") # coin package
##
Approximative General Independence Test
#it

data: time by group (control, treatment)
Z = 2.4389, p-value = 0.0382
alternative hypothesis: two.sided

Compare with wilcox.test() from stats package

wilcox.test(time ~ group, data = rotarod, exact = TRUE, paired = FALSE) # stats package

i

Wilcoxon rank sum test with continuity correction
#i

data: time by group
W = 102, p-value = 0.01647
alternative hypothesis: true location shift is not equal to @

Compare with t.test() from stats package

t.test(time ~ group, data = rotarod) # stats package

#it

Welch Two Sample t-test

#it

data: time by group

t = 2.3379, df = 11, p-value = 0.03932

alternative hypothesis: true difference in means between group control and group treatmen
t is not equal to @

95 percent confidence interval:

it 4.641392 153.858608

sample estimates:

mean in group control mean in group treatment
it 300.00 220.75

t.test() is not appropriate for this dataset.

Test xtrafo g ytrafo h teststat c

Independent samples

Wilcoxon-Mann-Whitney f_trafo() rank() "scalar"
Normal quantiles f_trafo() normal_trafo() "scalar"
Median f_trafo() median_trafo() "scalar"
Ansari-Bradley f_trafo() ansari_trafo() "scalar"
o Log rank f_trafo() logrank_trafo() "quad"
R ‘ b Kruskal-Wallis f_trafo() rank () "quad"
I r a ry Fligner f_trafo() fligner_trafo() "quad"
Spearman rank() rank() "scalar"
o Cochran-Mantel-Haenszel f_trafo() f_trafo() "quad"
CO In Pearson’s x> f_trafo() f_trafo() "quad"
Cochran-Armitage / Linear scores any "scalar"
Association
K-sample permutation test f_trafo() any any
Maximally-selected statistics maxstat_trafo() any "max"

Dependent samples

Friedman f_trafo() rank() "quad"
Maxwell-Stuart f_trafo() f_trafo() "quad"
Wilcoxon signed rank f_trafo() rank() "scalar"

Table 4: Representations of the conditional counterparts of important classical tests in coin.

Hothorn2008, JSS.

temp = independence_test(Pheno ~ SNP1 + SNP2 + SNP3 + SNP4 + SNP5 +
SNP6 + SNP7 + SNP8,
data = data.frame(Pheno, SNP_dat),

teststat = "maximum",
distribution = "asymptotic") # coin package
Apply
independence_test() ,,
to Example 2 ## Asymptotic General Independence Test
##

data: Pheno by

SNP1, SNP2, SNP3, SNP4, SNP5, SNP6, SNP7, SNP8
maxT = 3.2718, p-value = 0.008506

alternative hypothesis: two.sided

R library coin

* Framework was developed by Strasser and Weber (1999)

* Theoretical insights of a unified treatment of a huge class of permutation
tests

 Salient parts of the Strasser-Weber framework are elucidated by Hothorn et al.
(2006)

* Introduce the package and illustrate the transition from theory to practice

* A thorough description of the software implementation is given by Hothorn et al.
(2008)

References

 Strasser, H. and Weber, C. (1999). On the asymptotic theory of permutation
statistics. Mathematical Methods of Statistics 8(2), 220—250.

* Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2006). A Lego system for
conditional inference. The American Statistician 60(3), 257—263. doi:
10.1198/000313006X118430

* Hothorn, T., Hornik, K., van de Wiel, M. A. and Zeileis, A. (2008). Implementing a
class of permutation tests: The coin package. Journal of Statistical Software 28(8),
1-23. doi: 10.18637/jss.v028.i08

* Permutation Tests in Computational Statistics
* https://st47s.com/Math154/Notes/permschp.html

https://st47s.com/Math154/Notes/permschp.html

Next Lecture and Homeworks

* Week 13 (11/21): Machine learning (Jingjing)

 Homework 8 covering both permutation test and machine learning materials
will be distributed and due 12/04

* Revision due 12/11

In-Class Activity

	Slide 1: Permutation Test
	Slide 2: Hypothesis Test
	Slide 3: Permutation Test
	Slide 4: Permutation Test Procedure
	Slide 5: Example 1: test two-group mean difference
	Slide 6: Simulated Null and Alternative Phenotype Vectors
	Slide 7: Standard two sample t test results
	Slide 8: Standard two sample t test results
	Slide 9: Permute carrier group status by sample()
	Slide 10: Permute `carrier` group status
	Slide 11: Standard two sample t-test results with permuted group labels
	Slide 12: Standard two sample t-test results with permuted group labels
	Slide 13: Permutation test: two-group mean difference
	Slide 14: Permutation test: two-group mean difference
	Slide 15: Permutation test: two-group mean difference
	Slide 16: Permutation test: two-group mean difference
	Slide 17
	Slide 18: How many permutations are needed if using significance threshold 0.001?
	Slide 19: Example test statistics
	Slide 20: Pros and Cons of Permutation test
	Slide 21: When permutation test is useful
	Slide 22: Permutation for minimum order statistic
	Slide 23: Simulate a binary disease phenotype and genotype data of eight SNPs
	Slide 24: Simulate a binary disease phenotype and genotype data of eight SNPs
	Slide 25: Is this a null scenario?
	Slide 26: Observed minimum p-value
	Slide 27: Permutation for minimum order statistic
	Slide 28: Distribution of permuted maximum Z-score statistic
	Slide 29: Permutation test p-value for the maximum Z-score statistic
	Slide 30: When you get permutation p-value < 0.05 for a set of data generated under the null hypothesis! What dose this mean?
	Slide 31: Consider 8 individual tests
	Slide 32: In-Class Activity
	Slide 33: R package coin (conditional inference)
	Slide 34: R library coin
	Slide 35: Apply ` independence_test()` to Example 1
	Slide 36: How dose independence_test() work?
	Slide 37: How dose independence_test() work?
	Slide 38: How dose independence_test() work?
	Slide 39: Data Structure
	Slide 40: Independence Problems and Linear Statistics
	Slide 41: Derive conditional null distribution
	Slide 42: Example: two-sample test (location)
	Slide 43: Example: two-sample test (location)
	Slide 44: Example: two-sample test (location)
	Slide 45: Example: two-sample test (location)
	Slide 46: Compare with wilcox.test() from stats package
	Slide 47: Compare with t.test() from stats package
	Slide 48: R library coin
	Slide 49: Apply `independence_test()` to Example 2
	Slide 50: R library coin
	Slide 51: References
	Slide 52: Next Lecture and Homeworks
	Slide 53: In-Class Activity

