Multivariate Analysis

04/12/2022 (Week 13)

Jingjing Yang, PhD Assistant Professor of Human Genetics

Jingjing.yang@emory.edu

Outline

- Data preparation and visualization
- Multiple testing
- Differential gene expression analysis using edgeR

Multivariate Data is Common in Biomedical Researches

- Multiple variables are generally collected in biomedical projects
 - Demographic variables such as Age, Gender, BMI, Height, etc.
 - Multiple traits to characterize animal behaviors
 - Multiple genes
- Hypothesis test to identify significant association
 - Multiple testing
 - Account for confounding covariates
- Differential gene expression analysis

Visualize Multivariate/High-dimensional Data

- Learned skills
 - Histogram
 - Scatter plot
 - Heatmap
- Skills to be introduced in this lecture
 - Principal component analysis
 - UMAP

Data Analysis Guidelines

Example of Multivariate/High-dimensional Data

Famous "iris" data set

Sepal.Length	Sepal.Width <dbl></dbl>	Petal.Length <dbl></dbl>	Petal.Width <dbl></dbl>	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

Scatter Plot Matrix

Example of Multivariate/Highdimensional Data

RNA Sequencing data : Gene expression levels for ~20K human genes

Transcription

https://www.thoughtco.com/dna-transcription-373398

Profile Gene Expression Levels by RNA-sequencing

Downstream analysis

RNA-Seq Data

- Gene expression Quantitative Traits
 - Profiled by RNA sequencing (RNA-seq)
 - CPM (Counts Per Million) per gene
 - Count up all the read counts in a sample (library size) and divide this number by 1,000,000. This is your "per million" scaling factor.
 - Divide the read counts per gene by the "per million" scaling factor. This gives you CPM.
- 20K ~ 25K genes in human genome
- Bulk RNA-seq ; Single Cell RNA-seq

Example RNA-Seq Data

- Example RNA-Seq data from: David K. Lau et. al., 2019. Genomic Profiling of Biliary Tract Cancer Cell Lines Reveals Molecular Subtypes and Actionable Drug Targets. PMID: 31731200 ; DOI: 10.1016/j.isci.2019.10.044
- Samples from 20 biliary track cancer cell lines were profiled for gene expression data by RNA sequencing
- 24222 genes in the raw data

Inspecting Raw RNA-Seq Data

head(RNAseq_dt)

		01101070
## 1 NM_000014 1 0 10 25 8935 1 0	1 3	6 0
## 2 NM_000015 4 0 1 0 5 0 0	0 2	3
## 3 NM_000017 120 154 132 46 240 163 47	188 195	293
## 4 NM_000019 444 1246 467 426 350 1245 470	286 783	843
## 5 NM_000020 0 250 1 0 85 4 0	0 0	39
## 6 NM_000021 2373 1989 2648 796 1083 958 933	1539 2454	1555
## SNU1196 SNU245 SNU308 SNU478 SNU869 TFK1 TGBC14TKB	TGBC18TKB T	GBC2TKB TKKK
<i>##</i> 1 6 0 0 58 2 0 3	1	185 0
<i>##</i> 2 1 2 1 1 0 2 4	1	2 5
<i>##</i> 3 411 497 211 160 161 369 354	212	99 344
<i>##</i> 4 418 175 586 854 712 740 751	604	451 1034
<i>##</i> 5 2 0 2 2 5 4 27	1	0 0
<i>##</i> 6 1618 1539 1421 1282 1525 2151 1158	1590	804 1339

Normalize Raw RNA-Seq Data

apply(RNAseq_matrix, 2, sum)

##	EGI1	G415	HUCCT1	HUH28	MZCHA2	NOZ	0CUG1	0Z
##	12480812	14289644	11524427	14247144	12296380	13698008	13120204	11866325
##	SKCHA1	SNU1079	SNU1196	SNU245	SNU308	SNU478	SNU869	TFK1
##	13501752	11876625	12732950	10469013	13972069	11309785	12500489	15414668
##	TGBC14TKB	TGBC18TKB	TGBC2TKB	TKKK				
##	13224759	10735498	11619162	11487514				

- Summarizing read counts per column/sample gives us the library size. The total number of mapped read counts per sample.
- Various library sizes make the raw read counts per gene are not comparable across all samples/cell-lines.
- Need to Normalize read counts to Counts Per Million (CPM)

Get RNA-Seq Data in CPM

<pre>class(RNAseq_matrix)</pre>	<pre>apply(RNAseq_CPM, 2, sum)</pre>									
## [1] "data.frame"	##	EGI1	G415	HUCCT1	HUH28	MZCHA2	NOZ	0CUG1	0Z	
	##	1e+06	1e+06	1e+06	1e+06	1e+06	1e+06	1e+06	1e+06	
<pre>KNAseq_CPM <- cpm(KNAseq_matrix) class(PNAseq_CPM)</pre>	##	SKCHA1	SNU1079	SNU1196	SNU245	SNU308	SNU478	SNU869	TFK1	
Class(NVASeq_CFM)	##	1e+06	1e+06	1e+06	1e+06	1e+06	1e+06	1e+06	1e+06	
## [1] "matrix" "array"	## 1	TGBC14TKB	TGBC18TKB	TGBC2TKB	ТККК					
$\pi\pi$ [1] matrix array	##	1e+06	1e+06	1e+06	1e+06					

head(RNAseq_CPM)

##	EGI1	G415	HUCCT1	HUH28	MZCHA2	NOZ
## NM_0000	0.08012299	0.00000	0.86772210	1.754738	726.6366199	0.07300332
## NM_0000	0.32049197	0.00000	0.08677221	0.000000	0.4066237	0.0000000
## NM_0000	9.61475904	10.77704	11.45393172	3.228717	19.5179394	11.89954043
## NM_0000	19 35.57460845	87.19601	40.52262208	29.900730	28.4636617	90.88912782
## NM_0000	0.0000000	17.49519	0.08677221	0.000000	6.9126035	0.29201326
## NM_0000	21 190.13186001	139.19171	229.77281213	55.870847	88.0747017	69.93717627
##	0CUG1	0Z	SKCHA1	SNU1079	SNU1196	SNU245
## NM_0000	14 0.000000	0.08427209	0.2221934	0.000000	0.4712184	0.0000
## NM_0000	15 0.000000	0.00000000	0.1481289	0.252597	0.0785364	0.19104
## NM_0000	17 3.582261 1	5.84315279	14.4425701	24.670308	32.2784586	47.47343
## NM_0000	19 35.822614 2	4.10181754	57.9924739	70.979761	32.8282134	16.71600
## NM_0000	20 0.000000	0.00000000	0.000000	3.283761	0.1570728	0.00000
## NM_0000	21 71.111699 12	9.69474542	181.7541901	130.929452	127.0718883	147.00526
##	SNU308	SNU4	78 SNU8	69 -	TFK1 TGBC14	ТКВ
## NM_0000	14 0.0000000	5.128302	62 0.15999	37 0.000	0000 0.2268	472
## NM_0000	0.07157136	0.088419	01 0.00000	00 0.129	7466 0.3024	630
## NM_0000	17 15.10155726	14.147041	70 12.87949	62 23.9382	2386 26.7679	736
## NM_0000	19 41.94081778	75.509835	07 56.95777	18 48.0062	2237 56.78742	243
## NM_0000	0.14314272	0.176838	02 0.39998	44 0.2594	4931 2.04162	251
## NM_0000	21 101.70290456	113.353171	61 121.99522	75 139.5424	4151 87.56303	323
##	TGBC18TKB	TGBC2TKB	з тккк			
## NM_0000	0.09314892	15.9219744	0.000000			
## NM_0000	0.09314892	0.1721295	0.4352552			
## NM_0000	17 19.74757016	8.5204079	29.9455565			
## NM_0000	19 56.26194518	38.8151917	90.0107717			
## NM_0000	0.09314892	0.000000	0.000000			
## NM_0000	21 148.10677623	69.1960401	116.5613378			

Data Cleaning : filtering out genes with low CPM

- Low read counts are more likely to add noises.
- As a general rule, a good threshold can be chosen for a CPM value that corresponds to 10 raw read counts.

Count	СРМ
1	1
10	1
20	1
	Count 1 10 20

Data Cleaning : filtering out genes with low CPM

thresh <- RNAseq_CPM > 1
class(thresh)

[1] "matrix" "array"

head(thresh)

##		EGI1	G415	HUCCT1	HUH28	B MZCH	HA2	NO)Z 0C	UG1	0Z	SKCHA1	SNU1079	
##	NM_000014	FALSE F	ALSE	FALSE	TRUE	E TR	RUE	FALS	SE FA	LSE	FALSE	FALSE	FALSE	
##	NM_000015	FALSE F	ALSE	FALSE	FALSE	E FAI	LSE	FALS	SE FA	LSE	FALSE	FALSE	FALSE	
##	NM_000017	TRUE	TRUE	TRUE	TRUE	E TR	RUE	TRU	JE T	RUE	TRUE	TRUE	TRUE	
##	NM_000019	TRUE	TRUE	TRUE	TRUE	E TR	RUE	TRU	JE T	RUE	TRUE	TRUE	TRUE	
##	NM_000020	FALSE	TRUE	FALSE	FALSE	E TR	RUE	FALS	SE FA	LSE	FALSE	FALSE	TRUE	
##	NM_000021	TRUE	TRUE	TRUE	TRUE	E TR	RUE	TRU	JE T	RUE	TRUE	TRUE	TRUE	
##		SNU1196	SNU2	45 SNU	308 SN	10478	SNU	1869	TFK	1 T(GBC14TH	KB TGBC	l8TKB	
##	NM_000014	FALSE	FAL	SE FA	SE	TRUE	FA	LSE	FALS	Е	FALS	SE I	FALSE	
##	NM_000015	FALSE	FAL	SE FA	_SE F	FALSE	FA	LSE	FALS	E	FALS	SE I	FALSE	
##	NM_000017	TRUE	TR	UE TI	RUE	TRUE	Т	RUE	TRU	E	TRI	JE	TRUE	
##	NM_000019	TRUE	TR	UE TI	RUE	TRUE	Т	RUE	TRU	E	TRI	JE	TRUE	
##	NM_000020	FALSE	FAL	SE FAI	_SE F	FALSE	FA	LSE	FALS	E	TRI	JE I	FALSE	
##	NM_000021	TRUE	TR	UE TI	RUE	TRUE	Т	RUE	TRU	E	TRI	JE	TRUE	
##		TGBC2TK	B TK	KK										
##	NM_000014	TRU	E FAL	SE										
##	NM_000015	FALS	E FAL	SE										
##	NM_000017	TRU	E TR	UE										
##	NM_000019	TRU	E TR	UE										
##	NM_000020	FALS	E FAL	SE										
##	NM_000021	TRU	E TR	UE										

RNAseq_CPM.keep <- RNAseq_CPM[keep,]
class(RNAseq_CPM.keep)</pre>

[1] "matrix" "array"

dim(RNAseq_CPM.keep)

[1] 10034 20

head(RNAseq_CPM.keep)

##	EGI1	G41	.5 HUCC	Г1 HUH2	28 MZCHA	A2 N02	Z
## NM_000017	9.614759	10.77703	11.4539	93 3.22871	19.5179	94 11.89954	1
## NM_000019	35.574608	87.19601	4 40.5226	52 29.90073	80 28.4636	66 90.88913	3
## NM_000021	190.131860	139.19171	1 229.7728	31 55 . 87084	88.0747	70 69.93718	3
## NM_000026	43.747154	77.95855	5 52.4972	19 48.43075	59 53.1863	38 89.79408	3
## NM_000027	17.226443	7.55792	21.1724	42 17 . 68775	56 19.1926	54 14.67367	7
## NM_000028	49.836501	52.97542	8 32.105	72 58.11691	114.2612	27 13.87063	3
##	0CUG1	0Z	SKCHA1	SNU1079	SNU1196	SNU245	SNU308
## NM_000017	3.582261	15.84315	14.44257	24.67031	32.27846	47.47343	15.10156
## NM_000019	35.822614	24.10182	57.99247	70.97976	32.82821	16.71600	41.94082
## NM_000021	71.111699	129.69475	181.75419	130.92945	127.07189	147.00526	101.70290
## NM_000026	71.797664	48.96208	108.57850	67.44340	78.77200	48.33311	44.37424
## NM_000027	35.060430	29.15814	47.77158	26.01749	13.82241	13.18176	12.31027
## NM_000028	46.035870	35.05719	46.51248	34.35319	26.38823	34.86480	646.71882
##	SNU478	SNU869	TFK1	TGBC14TKB	TGBC18TKB	TGBC2TKB	ТККК
## NM_000017	14.14704	12.87950	23.93824	26.76797	19.74757	8.520408	29.94556
## NM_000019	75.50984	56.95777	48.00622	56.78742	56.26195	38.815192	90.01077
## NM_000021	113.35317	121.99523	139.54242	87.56303	148.10678	69.196040	116.56134
## NM_000026	138.19891	108.95574	68.18181	39.62265	44.89778	49.745412	35.69092
## NM_000027	18.56799	14.87942	22.57590	14.14014	59.14956	46.561017	17.58431
## NM_000028	65.87216	39.75844	72.52832	57.24112	28.13097	89.507316	54.58100

Data Visualization : Histogram plot per sample

ggplot(data.frame(RNAseq_CPM.keep), aes(x = EGI1)) + geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Normally distributed?

Data Transformation: Log2

ggplot(data.frame(RNAseq_CPM.keep), aes(x = log2(EGI1))) + geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Normally distributed?

Other Data Transformation

Standardization

- Center variables to have mean 0
- Scale variable variances to 1
- Square root
- Nature log
- Log10
- Inverse-normalize

Question

• Why do we like normally distributed data?

Data Visualization: Correlation between cell lines

ggplot(data.frame(RNAseq_CPM.keep.log2), aes(x = EGI1, y = G415)) + geom_point() +
 geom_smooth(method = "lm", se = FALSE)

`geom_smooth()` using formula 'y ~ x'

Data Visualization: Heatmap for highly variable genes

3BC14TKB **MZCHA2** G415 SNU308 SNU245 SNU478 SNU869 SNU1196 HUH28 OCUG1 HUCCT1 SKCHA1 ZON TFK1 TKKK SNU1079 GBC2TKB EGI1 **3BC18TKB**

How to visualize sample relationship using all gene expression data?

- 10034 genes left after filtering out low expressed ones
- Still high dimensional data
- Project high dimensional data to two dimensions (dimension reduction), and then a scatter plot will work.
- How?

Principal Component Analysis

Principal Component Analysis

- Find orthogonal loading vectors which explain data variation from the largest to the smallest
- Project original data matrix to loading vectors to obtain Principal Components (PCs)
- Top 2 loading vectors defines a model plane that explain most data variation
- Top 2 PCs can be plotted in a scatter plot to visualize samples

- Consider data matrix $X_{n \times p}$, with n samples and p variables
- Center and standardize columns in $X_{n \times p} \rightarrow Z_{n \times p}$
- PCA project original genotype data matrix to a new coordinate system such that the PC1 explains the most data variance, and then PC2, ...
 - Compute the $n \times n$ variance-covariance matrix for all samples as $\sum_{n \times n} = ZZ^T / (n - 1)$
 - Conduct eigenvalue decomposition of Σ , by R function eign().
 - Eigen vectors would be loading vectors (*w_k*, length p, k=1, 2, ...) for PC1, PC2,
 - Principle components (PCs) are given by: Zw_k

RNAseq.pca <- prcomp(t(RNAseq_CPM.keep.log2), retx = TRUE, scale. = TRUE)
str(RNAseq.pca)</pre>

```
## List of 5
## $ sdev : num [1:20] 36.6 33.8 30 26.7 25.4 ...
   $ rotation: num [1:10034, 1:20] -0.00983 0.00658 -0.00757 0.01461 -0.00949 ...
##
   ..- attr(*, "dimnames")=List of 2
##
   ....$ : chr [1:10034] "NM_000017" "NM_000019" "NM_000021" "NM_000026" ...
##
## ....$ : chr [1:20] "PC1" "PC2" "PC3" "PC4" ...
   $ center : Named num [1:10034] 4.3 5.79 7.08 6.19 4.7 ...
##
   ..- attr(*, "names")= chr [1:10034] "NM 000017" "NM 000019" "NM 000021" "NM 000026" ...
##
   $ scale : Named num [1:10034] 0.803 0.619 0.515 0.507 0.687 ...
##
   ..- attr(*, "names")= chr [1:10034] "NM_000017" "NM_000019" "NM_000021" "NM_000026" ...
##
   $ x : num [1:20, 1:20] -31.3 58.6 -11.9 14 -17.7 ...
##
##
   ..- attr(*, "dimnames")=List of 2
## ....$ : chr [1:20] "EGI1" "G415" "HUCCT1" "HUH28" ...
## ....$ : chr [1:20] "PC1" "PC2" "PC3" "PC4" ...
## - attr(*, "class")= chr "prcomp"
```

- Decide the number of top PCs to use in the analysis
 - Select the number of PCs such that a certain percentage of total data variation would be explained, e.g., 95%

cumsum(RNAseq.pca\$sdev^2) / sum(RNAseq.pca\$sdev^2)

[1] 0.1335446 0.2472170 0.3367607 0.4079120 0.4724116 0.5319329 0.5882011
[8] 0.6377418 0.6848993 0.7270407 0.7665954 0.8039310 0.8402245 0.8736117
[15] 0.9027830 0.9304987 0.9566286 0.9790234 1.0000000 1.0000000

- Decide the number of top PCs to use in the analysis
 - Select top K eigenvectors (w_k) whose corresponding eigenvalues are significantly large (e.g., 5 or 10) by a scree plot

```
# Variation explained by PCs
qplot(1:20, RNAseq.pca$sdev^2) + labs(x = "PCs")
```


Visualize Top 2 PCs

UMAP (Uniform Manifold Approximation and Projection)

Figure 5: UMAP projections of a 3D woolly mammoth skeleton (50k points, 10k shown) into 2 dimensions, with various settings for the n_neighbors and min_dist parameters.

UMAP : Dimension Reduction

- Uses local Manifold Approximations and patches together their local fuzzy simplicial set representations to construct a topological representation of the high dimensional data.
- Given some low dimensional representation of the data, a similar process can be used to construct an equivalent topological representation.
- UMAP then optimizes the layout of the data representation in the low dimensional space, to minimize the cross-entropy between the two topological representations.
- <u>https://pair-code.github.io/understanding-umap/</u>

UMAP : Dimension Reduction

Figure 2: Dimensionality reduction applied to the Fashion MNIST dataset. 28x28 images of clothing items in 10 categories are encoded as 784-dimensional vectors and then projected to 3 using UMAP and t-SNE.

UMAP

Generate UMAP data object
RNAseq.umap = umap(t(RNAseq_CPM.keep.log2))
RNAseq.umap

umap embedding of 20 items in 2 dimensions
object components: layout, data, knn, config

head(RNAseq.umap\$layout)

##	[,1]	[,2]
## EGI1	-0.6262318	0.7217832
## G415	-0.3408041	-1.2734034
## HUCCT1	-0.1232610	-0.2521879
## HUH28	0.2891026	-1.0146064
## MZCHA2	0.2892878	0.1983404
## NOZ	-0.6085395	-1.4466489

UMAP

Differential Gene Expression Analysis

- Test the null hypothesis that gene expression is equally expressed in two groups of samples
- Reject: the gene is a significant differential gene expression that expressed differently between two groups of samples
- Negative binomial distribution is reasonably to be assumed for gene expression read count data
- Generally, the test is conducted based on a negative binomial regression model with gene expression counts as the outcome and group information as the design matrix

Multiple Testing

- Need to test 10K or 20K genes
- Number of possible false positives with significance threshold = 0.05 under the null hypothesis?
- What is the Family-Wise Error Rate (FWER) for testing 10K genes?
 - Probability of making one or more false discoveries
 - Type I errors when performing multiple hypothesis tests

Consider the case of two association tests

- 2 independent tests performed
 - Test statistics T_1 and T_2 , *p*-values p_1 and p_2
- What if we reject the null whenever $p < \alpha$?
- If the null hypothesis is actually true in both cases,
 - Probability of rejecting null for test $1 = \alpha$
 - Probability of rejecting null for test $2 = \alpha$
- What's the probability that both are rejected? α^2
- What's the probability that neither are rejected? $(1-\alpha)^2$
- What's the probability that at least one is rejected? 1-(1- α)²
- What if instead of 2 tests, we have *m* tests? $1-(1-\alpha)^m$

Probability of rejecting when null is true if we reject whenever p<.05

What is the solution?

1) State upfront what hypotheses you will test

2) Count the number of tests you will perform

- 3) Include a strategy to assess significance while accounting for the number of tests
 - One strategy: Bonferroni-adjustment of *α*-level
 - Alternative strategy: Control false discovery rate (FDR)

Bonferroni adjustment of α -level

- Goal: to control the FWER (Family-Wise Error Rate, *a.k.a.* experiment-wide error rate)
 - Probability that we reject the null hypothesis for at least one of the tests that we performed, if all are truly null
- We showed earlier that for *m* tests, this probability (FWER) = $1 (1-\alpha)^m$
- So, maybe we could solve for α , to find the α that gives us our desired FWER?

• Bonferroni adjustment: $\alpha_{Bonf} = FWER/m$

False Discovery Rate (FDR)

FDR = Expected proportion of rejected hypothesis that were actually true

= E(V/R) for R > 0

Counts of hypotheses rejected and not rejected

	Not rejected	Rejected	Total
True null hypotheses	U	V	m 0
False null hypotheses	Т	S	<i>m-m</i> 0
Total	<i>m</i> -R	R	m

Controlling the FDR: Benjamini-Hochberg (BH) method

- Benjamini-Hochberg procedure controls FDR
 - Order p-values $p_{(1)} \le p_{(2)} \le ... \le p_{(m)}$
 - Let $k = \max\{i\}$ such that $p_{(i)} \le \frac{i}{m}q$ where q is the level at which we desire to control FDR (E(V/R) < q)
 - Compare smallest p to .05/m
 - Compare 2nd smallest p to .10/m.
 - Take largest k such that kth smallest $p \le .05^* k/m$.
 - FDR<.05 for the *k* most significant tests.
 - Reject *H*₍₁₎...*H*_(k)
 - Controlling FDR also controls FWER when all null hypotheses are true

Review: FDR vs. FWER

	Not rejected	Rejected	Total
True null hypotheses	U	V	m _o
False null hypotheses	Т	S	<i>m-m</i> ₀
Total	<i>m</i> -R	R	т

- FDR = E(V/R) = expected proportion of rejected hypotheses that are actually true
- FWER = P(V>0) = probability of rejecting *any* true hypotheses
 - Using a Bonferroni cutoff will control this at your desired level.

EdgeR

- 1. Generate a DGEList object from raw RNAseq data RNAseq_matrix.
- 2. Filter genes using filterByExpr() function, which keeps genes with worthwhile counts in a minimum number of samples (two by default).

3. Normalize read counts with respect to their library size by calcNormFactors().

```
RNAseq_list <- DGEList(RNAseq_matrix, group = cell_group$group_label)
keep <- filterByExpr(RNAseq_list)
RNAseq_list <- RNAseq_list[keep, , keep.lib.sizes=FALSE]
RNAseq_list <- calcNormFactors(RNAseq_list)</pre>
```

Design Matrix

4. Generate design matrix according to `cell_group\$group_label`

5. Estimate common, trended, and tag-wise negative binomial dispersion parameter by weighted likelihood empirical Bayes

 $^{\circ} \{r\}$

design <- model.matrix(~cell_group\$group_label)
print(design)</pre>

RNAseq_list <- estimateDisp(RNAseq_list, design)</pre>

	(Intercept)	cell_group\$group_labelMesenchymal
1	1	0
2	1	1
3	1	0
4	1	1
5	1	1
6	1	1
7	1	1
8	1	0
9	1	0
10	1	1
11	1	0
12	1	0
13	1	0
14	1	0
10	1	0
10	1	0
10	1	0
19	1	1
20	1	1
at	tr("assian") J
Г1	701	
at	tr(,"contrast	ts")
at	tr(,"contras	ts")\$`cell_group\$aroup_label`
Γ1] "contr.tree	atment"

Negative Binomial Model

- Assume π_{gi} be the true fraction of RNAseq reads in sample i that can originate from gene g, sum to 1 across all genes per sample i.
- Let $\sqrt{\phi_g}$ denote the coefficient of variation (CV, standard deviation divided by mean) of π_{gi} among all samples.
- Let y_{gi} denote read count for sample i and gene g, sum to N_i which is the library size.

Negative binomial model

Then

$$E(y_{gi}) = \mu_{gi} = N_i \pi_{gi}.$$

Assuming that the count y_{gi} follows a Poisson distribution for repeated sequencing runs of the same RNA sample, a well known formula for the variance of a mixture distribution implies:

 $\operatorname{var}(y_{gi}) = E_{\pi} \left[\operatorname{var}(y|\pi) \right] + \operatorname{var}_{\pi} \left[E(y|\pi) \right] = \mu_{gi} + \phi_g \mu_{gi}^2.$

Dividing both sides by μ_{gi}^2 gives

$\mathrm{CV}^2(y_{gi}) = 1/\mu_{gi} + \phi_g.$

The first term $1/\mu_{gi}$ is the squared CV for the Poisson distribution and the second is the squared CV of the unobserved expression values. The total CV² therefore is the technical CV² with which π_{gi} is measured plus the biological CV² of the true π_{gi} . In this article, we call ϕ_g the dispersion and $\sqrt{\phi_g}$ the biological CV although, strictly speaking, it captures all sources of the inter-library variation between replicates, including perhaps contributions from technical causes such as library preparation as well as true biological variation between samples.

Biological Coefficient of Variation (BCV)

Total $CV^2 = Technical CV^2 + Biological CV^2$.

Biological CV (BCV) is the coefficient of variation with which the (unknown) true abundance of the gene varies between replicate RNA samples. It represents the CV that would remain between biological replicates if sequencing depth could be increased indefinitely. The technical

Quasi negative binomial

The NB model can be extended with quasi-likelihood (QL) methods to account for genespecific variability from both biological and technical sources [23, 22]. Under the QL framework, the variance of the count y_{gi} is a quadratic function of the mean,

 $\mathsf{var}(y_{gi}) = \sigma_g^2(\mu_{gi} + \phi \mu_{gi}^2),$

where ϕ is the NB dispersion parameter and σ_q^2 is the QL dispersion parameter.

Any increase in the observed variance of y_{gi} will be modelled by an increase in the estimates for ϕ and/or σ_g^2 . In this model, the NB dispersion ϕ is a global parameter whereas the QL is gene-specific, so the two dispersion parameters have different roles. The NB dispersion describes the overall biological variability across all genes. It represents the observed variation that is attributable to inherent variability in the biological system, in contrast to the Poisson variation from sequencing. The QL dispersion picks up any gene-specific variability above and below the overall level.

Quantile-adjusted Conditional Maximum Likelihood

Estimating dispersions

edgeR uses the quantile-adjusted conditional maximum likelihood (qCML) method for experiments with single factor.

Compared against several other estimators (e.g. maximum likelihood estimator, Quasi-likelihood estimator etc.) using an extensive simulation study, qCML is the most reliable in terms of bias on a wide range of conditions and specifically performs best in the situation of many small samples with a common dispersion, the model which is applicable to Next-Gen sequencing data. We have deliberately focused on very small samples due to the fact that DNA sequencing costs prevent large numbers of replicates for SAGE and RNA-seq experiments.

The qCML method calculates the likelihood by conditioning on the total counts for each tag, and uses pseudo counts after adjusting for library sizes. Given a table of counts or a DGEList object, the qCML common dispersion and tagwise dispersions can be estimated using the estimateDisp() function. Alternatively, one can estimate the qCML common dispersion using the estimateCommonDisp() function, and then the qCML tagwise dispersions using the estimateTagwiseDisp() function.

Testing for DE genes

For all the Next-Gen squencing data analyses we consider here, people are most interested in finding differentially expressed genes/tags between two (or more) groups. Once negative binomial models are fitted and dispersion estimates are obtained, we can proceed with testing procedures for determining differential expression using the exact test.

The exact test is based on the qCML methods. Knowing the conditional distribution for the sum of counts in a group, we can compute exact *p*-values by summing over all sums of counts that have a probability less than the probability under the null hypothesis of the observed sum of counts. The exact test for the negative binomial distribution has strong parallels with Fisher's exact test.

EdgeR

4. Generate design matrix according to cell_group\$group_label

5. Estimate common, trended, and tag-wise negative binomial dispersion parameter by weighted likelihood empirical Bayes

design <- model.matrix(~cell_group\$group_label)
RNAseq_list <- estimateDisp(RNAseq_list, design)</pre>

6. Conduct differential gene expression analysis by quasi-likelihod F-tests, glmQLFit().

7. Sub-setting for top significant genes by topTags().

```
# To perform quasi-likelihood F-tests
fit <- glmQLFit(RNAseq_list, design) # Perform test per gene
qlf <- glmQLFTest(fit, coef=2) # Get test statistics for the second column in the design mat
rix
top_sig_genes <- topTags(qlf, n=1000, p.value = 0.05)
dim(top_sig_genes)</pre>
```

[1] 719 5

FDR (BH) Method is Used by EdgeR

head(top_sig_genes)

Coefficient: cell_group\$group_labelMesenchymal PValue ## F logFC logCPM FDR ## NM_080833 -7.333290 2.865968 67.65855 5.719377e-08 0.0008489272 ## NM_000951 -4.120588 3.011724 59.65134 1.553685e-07 0.0009359932 ## NM_001195279 -4.630833 1.454607 58.16298 1.891787e-07 0.0009359932 ## NR_039988 -9.019289 3.484523 55.46201 2.731087e-07 0.0010134382 ## NM_023938 -4.167321 7.020442 51.69780 4.660921e-07 0.0013836411 ## NM_138435 -7.908154 2.813640 47.47163 8.795781e-07 0.0016759465

Visualize Differential Gene Expression Analysis Results : Volcano Plot

Example 2: Account for Batch Effects by EdgeR

4.5.6 Data exploration

The data can be explored by generating multi-dimensional scaling (MDS) plots. This visualizes the differences between the expression profiles of different samples in two dimensions.

Note: Filtering and normalization has been applied to the DGEList object.

The MDS plot shows clear separation of the Pasilla down vs normal samples, but also a batch effect associated with sequencing type and date.

Multiple factors and covariates can be accounted through the design matrix in EdgeR

4.5.7 The design matrix

To account for the batch effect observed from the MDS plot, we create a design matrix as follows:

```
> Batch <- factor(c(1,3,4,1,3,4))</pre>
> Pasilla <- factor(GEO$Pasilla, levels=c("Normal","Down"))</pre>
> design <- model.matrix(~ Batch + Pasilla)</pre>
> design
  (Intercept) Batch3 Batch4 PasillaDown
1
            1
                   0
                                      0
                          0
2
           1
                   1
                          0
                                      0
                   0
3
            1
                          1
                                      0
                   0
4
            1
                          0
                                      1
                   1
5
            1
                          0
                                      1
            1
                   0
6
                          1
                                      1
```

Generalized linear models

Generalized linear models (GLMs) are an extension of classical linear models to nonnormally distributed response data [9]. GLMs specify probability distributions according to their mean-variance relationship, for example the quadratic mean-variance relationship specified above for read counts. Assuming that an estimate is available for ϕ_g , so the variance can be evaluated for any value of μ_{gi} , GLM theory can be used to fit a log-linear model

 $\log \mu_{gi} = \mathbf{x}_i^T \boldsymbol{\beta}_g + \log N_i$

Estimating dispersions

For general experiments (with multiple factors), edgeR uses the Cox-Reid profile-adjusted likelihood (CR) method in estimating dispersions [25]. The CR method is derived to overcome the limitations of the qCML method as mentioned above. It takes care of multiple factors by fitting generalized linear models (GLM) with a design matrix.

Testing for DE genes

For general experiments, once dispersion estimates are obtained and negative binomial generalized linear models are fitted, we can proceed with testing procedures for determining differential expression using either quasi-likelihood (QL) F-test or likelihood ratio test.

While the likelihood ratio test is a more obvious choice for inferences with GLMs, the QL F-test is preferred as it reflects the uncertainty in estimating the dispersion for each gene. It provides more robust and reliable error rate control when the number of replicates is small. The QL dispersion estimation and hypothesis testing can be done by using the functions glmQLFit() and glmQLFTest().

Given raw counts, NB dispersion(s) and a design matrix, glmQLFit() fits the negative binomial GLM for each tag and produces an object of class DGEGLM with some new components. This DGEGLM object can then be passed to glmQLFTest() to carry out the QL F-test. User can select one or more coefficients to drop from the full design matrix. This gives the null model against which the full model is compared. Tags can then be ranked in order of evidence for differential expression, based on the *p*-value computed for each tag.

Estimating the dispersion

We estimate NB dispersions using the estimateDisp function. The estimated dispersions can be visualized with plotBCV.

> y <- estimateDisp(y, design, robust=TRUE)</pre>

> y\$common.dispersion

[1] 0.0145

> plotBCV(y)

Average log CPM

Note that only the trended dispersion is used under the quasi-likelihood (QL) pipeline. The tagwise and common estimates are shown here but will not be used further.

For the QL dispersions, estimation can be performed using the glmQLFit function. The results can be visualized with the plotQLDisp function.

```
> fit <- glmQLFit(y, design, robust=TRUE)
> plotQLDisp(fit)
```


Average Log2 CPM

4.5.9 Differential expression

We test for differentially expressed exons between Pasilla knockdown and normal using the QL F-test.

> qlf <- glmQLFTest(fit, coef=4)</pre>

The top set of most significant exons can be examined with topTags. Here, a positive log-fold change represents exons that are up in Pasilla knockdown over normal. Multiplicity correction is performed by applying the Benjamini-Hochberg method on the *p*-values, to control the false discovery rate (FDR).

```
> topTags(qlf)
```

```
Coefficient: PasillaDown
```

	GeneID	Chr	Start	End	Length	Symbol	logFC	logCPM	F	
150709	32007	Х	10674926	10676128	1203	sesB	-3.26	7.21	944	
150713	32007	Х	10675026	10676128	1103	sesB	-3.26	7.21	943	
150697	32008	Х	10672987	10673728	742	Ant2	2.85	6.14	851	
91614	42865	3R	19970915	19971592	678	Kal1	-4.43	3.81	754	
107856	44030	3L	2561932	2562843	912	msn	-2.46	5.59	601	
150702	32008	Х	10674230	10674694	465	Ant2	2.96	4.55	570	
150695	32008	Х	10674230	10674559	330	Ant2	2.95	4.54	569	
70750	44258	3R	5271691	5272628	938	ps	-2.28	5.95	567	
11333	44548	2R	6407125	6408782	1658	lola	2.25	6.14	558	
96434	43230	3R	22695915	22696094	180	BM-40-SPARC	-2.28	8.54	536	
	PValı	le	FDR							
150709	4.58e-1	15 9	.27e-11							
150713	4.62e-1	15 9	.27e-11							
150697 9.96e-15 1.33e-10										
91614 2.45e-14 2.46e-10										
107856	1.32e-1	13 1	.01e-09							
150702	1.95e-1	13 1	.01e-09							

Summarize Differential Gene Expression Analysis Results

The total number of DE exons in each direction at a FDR of 5% can be examined with decideTests.

```
> is.de <- decideTests(qlf, p.value=0.05)
> summary(is.de)
        PasillaDown
Down 2113
NotSig 36216
Up 1793
```

Help links

- R function: prcomp(); <u>https://www.rdocumentation.org/packages/stats/versions/3.5.1/topics/prcomp</u>
- UMAP: <u>https://cran.r-</u> project.org/web/packages/umap/vignettes/umap.html
- EdgeR:

https://www.bioconductor.org/packages/devel/bioc/vignettes/edgeR /inst/doc/edgeRUsersGuide.pdf