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Study relationship between two variables (X, Y)

* Hypothesis testing : e.g.,

t-test
* Pearson’s correlation cov(X,Y)
coefficient r PXY = p—
e Unit free
* Dose not depend on where:

number of samples _ .
e cov is the covariance

e 0x is the standard deviation of X

e oy is the standard deviation of Y



Pearson’s Correlation Test

* Hy:r=0;, Hyr #0

- > i1 (i —Z)(yi — 7)
Vi (@ - 2%/ (i - 9)?

where:

e 1 is sample size
e x;,1y; are the individual sample points indexed with J

oI = % Z?:l x; (the sample mean); and analogously for y



Pearson’s Correlation Test

* Under Hy: r = 0, with sample size n, the standard error of the correlation
coefficient 7 is given by
1—1?
0y =

n—2
* Under H: Test statistic t follows a Student’s t-distribution with degrees of
freedomn — 2




Q1: Why is the Pearson’s Correlation
Test follows a Student’s t-distribution
with degrees of freedom of n-27?



Answer

Estimating the population standard deviation
has N-1 degrees of freedom because the
standard deviation requires an estimate of the
mean, so the univariate t-test has N-1 df.

In contrast, in the case of the correlation
coefficient, we have to estimate two
population standard deviations (one for X and
one for Y), plus the covariance.

To do this, we need estimates of both means,
so the degrees of freedom for a correlation is
N-2.



Q2: What is p-value?



what is p-value

A p-value is a statistical measure that helps you determine the significance of your results in
hypothesis testing. Specifically, it represents the probability of obtaining results at least as
extreme as those observed in your sample data, assuming that the null hypothesis is true.

Here's a breakdown:
« Null Hypothesis (HO): This is the default assumption that there is no effect or no difference.

» Alternative Hypothesis (H1): This is what you want to prove, indicating that there is an effect
or a difference.

e Low p-value (typically = 0.05): Suggests that the observed data is unlikely under the null
hypothesis, leading you to reject HO.

e High p-value (> 0.05): Indicates that the observed data is consistent with the null
hypothesis, and you fail to reject HO.

It's important to remember that a p-value does not measure the size of an effect or the

importance of a result; it merely indicates whether the observed data are statistically significant.



cor.test(~ age + wholeWeight, data = abalone, alternative = "two.sided",
method = "pearson”)

)
Pearson’s
. Pearson's product-moment correlation
Correlation
data: age and wholeWeight
TeSt t = 41.498, df = 4175, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to @

CO rteSt() 95 percent confidence interval:

©.5185606 ©.5615148
sample estimates:

cor
0.5403897




Beyond Simple Hypothesis Testing

* Quantify correlation between two variables

* Quantify correlation between one outcome variable and multiple predictor
variables

e Account for confounding factors in the test

* Predict one outcome variable by using one or multiple predictor variables



Relationship between one response variable and multiple predictor
variables?

Abalones Dataset
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Age of Abalones by Whole Weight

Best fit lines shown by sex
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Regression

« Technique used for the modeling and analysis of
numerical data

* Exploits the relationship between two or more
variables so that we can gain information about one of

them through knowing values of the other

« Regression can be used for prediction, estimation,
hypothesis testing, and modeling causal relationships



Linear Regression |



Single variant linear regression model
Vi = Po + [1x; + &, i=1,...,n

* x; :Independent (explanatory, predictor, covariate)
Variable value for sample |

*y; : Dependent (response, outcome) Variable value for
sample |

* [, : Intercept of the fitted linear line

* 5, : Slope of the fitted linear line, coefficient of X

e £;~N(0,0%) :Residual value for sample |

16



How to fit the

model?

* How to find the
linear line by
estimating the

intercept S,

and slope 5 ?



Residuals in the linear regression model

K\True Regression Line
y =Py + px

By




The expected value of the outcome variable Y is a linear function of the predictor X

Graphical Interpretation

y =By + px
Uy, = By + Bix,

Uy, = By + Bix,

> X

* For example, if x = height and y = weight then Uy|x-¢0 is the average

weight for all individuals 60 inches tall in the population



Ordinary Least Square Estimates

* Point estimates of /;’0 and /§1 are obtained by the principle of least
squares

FBoB) = D [yi =By + Bix)]?
i=1 Calculate the Slope (31): The slope can be calculated using the formula:
° 5 _ MEXY) — (ZX)(ZY)
i n(d° X?) - (3 X)?

y ® Where:

B * 1 is the number of observations
0

e > XY is the sum of the product of X and Y’

X

>~ X is the sum of X values

. . Y is the sum of Y values
Calculate the Intercept (3;): Once you have 3;, you can calculate the intercept using: Z

_ _ 3" X? is the sum of squared X values
Bo=Y — X

Where:
o Y is the mean of the Y values

o X is the mean of the X values



Predicted and Residual Values

Predicted, or fitted, values are values of y predicted by the least-
squares regression line obtained by plugging in x4,x,,...,x_ into the
estimated regression line

5\’1 =P, - bx,
5\’2 =f, - B, X,

Residuals are the deviations of observed and predicted values
e =y -

ez=y2_)A’2




S opd
fitl <- IlmCage ~ wholeWeight, data = abalone)

summary(fitl)
Call:
Im(formula = age ~ wholeWeight, data = abalone)
Linear |
. : Residuals:
Reg ression In Min 10 Median 3Q Max

-6.2693 -1.7518 -0.6874 1.0177 15.7029

R by Im()

Coefficients:

Estimate Std. Error t value Pr(Gltl)
(Intercept) 8.48924 0.08244 103.0 <Ze-1b ***

wholeWeight 3.55291 0.08562 41.5 <Ze-16 ***

Signif. codes: @ ‘***’ 9.001 ‘**’ 9.01 ‘*’ 0.05 *.” 0.1 * " 1

Residual standard error: 2.713 on 4175 degrees of freedom
Multiple R-squared: 0.292, Adjusted R-squared: 0.2919
F-statistic: 1722 on 1 and 4175 DF, p-value: < 2.2e-16



e ’
residuals.df <- data.frame(residuals = fitl$residuals)
ggplot(residuals.df, aes(sample = residuals)) +
stat_qq() + stat_gq_line() +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles", title = "Normal Q-Q Plot")

|\\

Check Normal Q-Q Plot
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1. Relationship between rings/age and whole weight while accounting for Sex?
2. Predict Abalone age/rings by multiple measurements?

Abalones Dataset

Name Data Type Measurement Unit Description

Sex nominal - M, F, and | (infant)

Length continuous mm Longest shell measurement
Diameter continuous mm perpendicular to length
Height continuous mm with meat in shell

Whole weight continuous grams whole abalone

Shucked weight continuous grams weight of meat

Viscera weight continuous grams gut weight (after bleeding)
Shell weight continuous grams after being dried

Rings integer - +1.5 gives the age in years



Multivariate Linear Regression

* Extension of the simple linear regression model to two or more
independent/predictor variables

Y —_ ﬁo +181X1 +ﬁ2X2 + "‘+ﬁpo + €
* Exercise: fit the following multivariate linear regression model

with the Abalone data.

» Age ~ Sex + length + diameter + height + wholeWeight +
shuckedWeight + wisceraWeight + shelllWeight



How to quantify categorical independent
variable?

The sex variable in the
abalone dataset has
three levels: F |, M ?

Binary variable: coded
as 0/1




How to quantify categorical independent

variable?

e The sex variable in the

abalone dataset has three Sex X1 X2
levels: F, M, I?
e Code through (k-1) dummy F 1 0

variables for k levels:




Fit @ multivariate
linear regression

model with sex
and
wholeWeight

" {r}
fit2 <- Im(age ~ factor(sex) + wholeWeight, data = abalone)
summary(fit2)

Call:
Im(formula = age ~ factor(sex) + wholeWeight, data = abalone)

Residuals:
Min 1Q Median 3Q Max
-6.0404 -1.7442 -0.5449 0.9935 15.7240

Coefficients:

Estimate Std. Error t value Pr(Gltl)
(Intercept) 9.6770 0.1290 74.987 < 2e-16 ***
factor(sex)I -1.5034 0.1207 -12.454 < 2e-16 ***
factor(sex)M -0.2684 0.1004 -2.674 0.00753 **
wholeWeight 2.8210 0.1013 27.849 < 2e-16 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*> 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.661 on 4173 degrees of freedom

Multiple R-squared: 0.3195, Adjusted R-squared: 0.319
F-statistic: 653.2 on 3 and 4173 DF, p-value: < 2.2e-16



In-Class Exercise :
Im()




Question Need to Answer for In-class
participation credit.

* What is Regression R-square?

 What dose it mean if you get increased Regression R-square by
adding additional predictor variables? The same question is included

in Task 5 in Exercise 1. Rmd.



Generalized Linear Regression |




What's the difference

generalized linear moc

General

ElY] =By + B1X4

Y~N(u,0?)

els?

vetween general and

Generalized

E

g~"

g(¥)] =By + p1X;

( A .
Bernoulli, Binomial
Poisson
Negative binomial

L etc

link” function to transform Y

g(¥)~N(u, o) 52



Why generalized?

Apply linear regression to outcome variables that are clearly not normally
distributed

 Binary : case/control, yes/no, 0/1
Y~Bernoulli (p), 0<p<1

* Poisson distributed counts
Y~Poisson (1), A>0

33



Generalized linear regression model

* The mean/expectation function of ¥ can usually be
expressed as a function of the distribution parameters

* Binary outcome: E[Y]=p
* Poisson outcome: E[Y]= /1

* Model a linear relation ship between E[g(Y )] and
explanatory/independent/predictor variables X



Logistic Regression: Y ~Bernoulli (p)

* lLogOdds = log (&) = BX;

1

p = Prob(Y =1)

"P=Toxp T o(XpF), Sigmoid function of X[

14

0.5

g(E[Y]) is the log odds of success
probability or logit

Model will be fitted by maximizing
the likelihood function



Logistic Regression: Y~Bernoulli (p)

Linear Regression Logistic Regression

Predicted Y lies within

Predicted Y can exceed
0 and 1 range

0 and 1 range




Logit link function

Generalized linear model: log (L) = Lo + f1X4

1-p

o A one unit change in X; leads to a 3; change in the log odds

o Interms of odds: odds(Y =1) =e*™*

by+b X

by+b X

o In terms of probability or proportion: Pr(Y =1)= o

Logit, odds, and probability are different ways of expressing the
same thing

37



Logit link function

* Logit
»Natural log (e) of an odds
» Often called a log odds
» The logit scale linearizes odds!
* Logits are continuous and are centered on zero (think of as the z-score for
the binomial world!)
»p =0.50, odds = 1, then logit =0
»p =0.70, odds = 2.33, then logit = 0.85
»p = 0.30, odds = .43, then logit = -0.85
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Example
dataset :

Cleveland
heart disease

Name
age
sex
cp

trestbps

chol

fbs

restecg

thalach
exang

oldpeak

slope

ca

thal

disease

Data Type
continuous
binary

categorical

continuous

continuous

continuous

continuous

continuous
binary

continuous

categorical

continuous

categorical

categorical

Description
age in years
1 =male; 0 = female

chest pain type - 1: typical angina; 2:
atypical angina; 3: non-anginal pain; 4:
asymptomatic

resting blood pressure (in mm Hg on
admission to the hospital)

serum cholestoral in mg/dl

(fasting blood sugar > 120 mg/dl) (1 = true;
0 = false)

resting electrocardiographic results - 0:
normal; 1: having ST-T wave abnormality; 2:
showing probable or definite left ventricular
hypertrophy by Estes’ criteria

maximum heart rate achieved
exercise induced angina (1 = yes; 0 = no)

ST depression induced by exercise relative
to rest

the slope of the peak exercise ST segment-
1: upsloping; 2: flat; 3: downsloping

number of major vessels (0-3) colored by
flourosopy

3 = normal; 6 = fixed defect; 7 = reversable
defect

absence (0) vs. presence (1, 2, 3, 4)



Study the relationship between resting blood pressure would affect
heart disease presence

—
Qo
o
o0

Resting blood pressure
s 3 &
Resting blood pressure
o
o

—
N
o

O

o
O
o

- || mm

Heart disease Heart disease




Study the
relationship
between resting

blood pressure
would affect heart
disease presence

Pearson's product-moment correlation

data: HD and trestbps
t = 2.647, df = 301, p-value = 0.008548
alternative hypothesis: true correlation is not equal to @
95 percent confidence interval:
0.03880692 0.25910016
sample estimates:
cor
0.1508254



Study the relationship between resting blood pressure would affect
heart disease presence

Welch Two Sample t-test

data: trestbps by HD
t = -2.6152, df = 274.64, p-value = 0.009409
alternative hypothesis: true difference in means between group @ and group 1 is not equal
to 0
95 percent confidence interval:
-9.321775 -1.314915
sample estimates:

mean in group @ mean in group 1
129.2500 134.5683



o {r}
fit3 <- glm(HD ~ trestbps, data = cleveland, family = "binomial™)

summary(fit3)
Call:
glm(formula = HD ~ trestbps, family = "binomial", data = cleveland)
I—OgIStIC Deviance Residuals:
. . = Min 1Q Median 3Q Max
RegreSS|on. -1.4773 -1.0948 -0.9414 1.2394  1.4966
ny
F+ [) Coefficients:

Estimate Std. Error z value Pr(>lzl)

tFEStbpS (Intercept) -2.483687 0.903634 -2.749 0.00599 **
trestbps 0.017587 ©0.006796 2.588 0.00966 **

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 417.98 on 302 degrees of freedom
Residual deviance: 411.03 on 301 degrees of freedom
AIC: 415.03

Number of Fisher Scoring iterations: 4



S fr}
fit4 <- glm(HD ~ age + sex + trestbps + factor(thal), data = cleveland, family = "binomial")
summary(fit4)

Call:
glm(formula = HD ~ age + sex + trestbps + factor(thal), family = "binomial",
data = cleveland)

Deviance Residuals:
Min 1Q  Median 3Q Max

ACCOU ﬂt for -2.0986 -0.7282 -0.4232 0.7656 1.9112

Coefficients:

Estimate Std. Error z value Pr(>lzl)
(Intercept) -5.735162 .360779 -4.215 2.50e-05 ***
.016683 3.149 0.00164 **
.339110 2.281 0.02252 *
.008436 1.076 0.28175
.561693 2.691 0.00713 **
.306639 6.979 2.97e-12 ¥**

age, sex, and
thal o 773058

sex
trestbps 0.009081
factor(thal)e 1.511252

factor(thal)7 2.140144

(SIS IS IS T

Signif. codes: @ ‘***’ 9,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 <’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 415.20 on 300 degrees of freedom
Residual deviance: 311.38 on 295 degrees of freedom

(2 observations deleted due to missingness)
AIC: 323.38

Number of Fisher Scoring iterations: 4



Logistic regression results

Normal Q-Q Plot
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Generalized linear model families

Normal outcome e Gaussian

Binary outcome e Binomial

e Poisson

Count outcome e Negative binomial

Continuous positive  XEMiE
outcome e Inverse Gaussian

Common link functions: identity, logit, log, square-root, inverse, etc.




IV=independent variable
DV=dependent variable

DV Normally
distributed
Linear relationship

with IV |

General Linear

Regression,
Im()
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Checking Assumptions

* Critically important to examine data and check assumptions
underlying the regression model

» Outliers

» Normality

» Constant variance

» Independence among residuals

* Standard diagnostic plots include:

» scatter plots of y versus x. (outliers)

» qq plot of residuals (normality)

» residuals versus fitted values (independence, constant variance)
> residuals versus x; (outliers, constant variance)



* Regression offers a single cohesive approach to inference and
estimating effect sizes

Response ~ Predictors

* Only reason to stick with t-tests/ANOVA are
* Mostly just care about “statistical significance”
* No other confounding covariates
 Cultural (engrained in biomedical community)

49



Regression or ANOVA/t-tests?

 ANOVA/t-tests thinking emphasize “statistical significance” after
experiment

* Regression thinking emphasizes overall weight of an independent variable
predictively

* Regression is easy-peasy for “completely randomized” samples
* Im() —for general linear model
e glm() —for generalized linear model

50



In-Class Exercise 2 : glm()




