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Outline

* Transcriptome-wide Association Studies (TWAS)

* PrediXcan based on Elastic-Net model (Gamazon et. al. Nature Genetics,
2015)

* TIGAR based on Bayesian Dirichlet Process Regression model (Nagpal et. al,

AJHG 2019)
* Burden TWAS
* Variance Component TWAS
e PMR-Egger based on a Mendelian Randomization (MR) likelihood framework
that unifies existing TWAS and MR methods (Yuan et. al, Nature
Communications, 2020).
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Profile Gene Expression Levels by RNA-sequencing
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Transcriptomic Data

* Gene expression Quantitative Traits
* Profiled by RNA sequencing (RNA-seq)

 TPM (Transcripts Per Kilobase Million) per gene
* Divide the read counts by the length of each gene in kilobases. This gives you reads per kilobase (RPK).

* Count up all the RPK values in a sample and divide this number by 1,000,000. This is your “per million”
scaling factor.

* Divide the RPK values by the “per million” scaling factor. This gives you TPM.
20K ~ 25K genes in human genome
* Tissue specific
* Subject to relevant tissue availability

Could be time specific
* Vary over development or disease course

Could be cell-type specific
* Bulk RNA-seq vs. Single Cell RNA-seq



eQTL

* Consider the profiled gene expression levels as the quantitative trait E; in the
following single variant linear regression model:

E; = Bo+aC + B1X +e, e~N(0,0%)
* X represents the genotype data (0, 1, 2) or dosage [0, 2] of the test SNP

* (C represents the confounding covariates or other environmental variables
* € represents the error term, other unknown factors

 eQTL :SNPs significantly associated with a gene expression quantitative trait
‘LHO': (BlQ?Lg) is significantly rejected) are referred as expression Quantitative Trait
oci (e

e Cis-eQTL : eQTL nearby the test gene (e.g., located within the +-1MB region of the
transcription starting site; thousands cis-SNPs per gene).

* Trans-eQTL : eQTL distant from the test gene (e.g., located out of the +-1MB
region of the transcription starting site, or on ditferent chromosome; ~10M trans-
SNPs per gene).
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* Number of samples with genotype >= 70
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Fig. 1 Sample and data types in the
GTEXx v8 study.

(A) lllustration of the 54 tissue types
examined (including 11 distinct brain
regions and two cell lines), with
sample numbers from genotyped
donors in parentheses and color
coding indicated in the adjacent
circles. Tissues with 70 or more
samples were included in QTL
analyses.

(B) Illustration of the core data types
used throughout the study. Gene
expression and splicing were
quantified from bulk RNA-seq of
heterogeneous tissue samples,

and local and distal genetic effects (cis-
QTLs and trans-QTLs, respectively)
were quantified across individuals for
each tissue.

The GTEX Consortium, Science 2020.
DOI: 10.1126/science.aaz1776
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Fig 2. QTL discovery.

(A) The number of genes with a cis-eQTL
(eGenes)

or cis-sQTL (sGenes) per tissue, as a function of
sample size. See Fig. 1A for the legend of tissue
colors.

(B) Allelic heterogeneity of cis-eQTLs depicted
as proportion of eGenes with one or more
independent cis-eQTLs (blue stacked bars; left y
axis) and as a mean number of cis-eQTLs per
gene (red dots; right y axis). The tissues are
ordered by sample size.

(C) The number of genes with a trans-eQTL as a
function of the number of cis-eGenes.

(D) Sex-biased cis-eQTL for AURKA in skeletal
muscle, where rs2273535-T is associated with
increased AURKA expression in males (P =9.02
x 10727) but not in females (P = 0.75).

(E) Population-biased cis-eQTL for SLC44A5 in
esophagus mucosa (aFC =-2.85 and -4.82 and
in African Americans (AA) and European
Americans (EA), respectively; permutation

P value = 1.2 x 1073).

TPM, transcripts per million.
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Transcriptome-wide Association Studies
(TWAS) Framework s Gonoipo datmol ol Go NP

* SNP effect sizes on transcriptome (eQTL effect sizes) w;

GWAS dataset

T,=Xw+e

GReXy =Y wix!
i=1

Pheno S £ A~ o O~ . O [~ s
e E(g(Ypheno| X", W)| = YGReX ¢ = Y(E w,-x,—) - E (ywi)x;
(3) Associate i=1 i=1
Individuals Individuals PrediXcan

p— - ——

2) Predict

Genes

Predictive model
of expression

Genotypes

Gene expression decomposition

Wainberg M. et. al. Nat. Genetics. 2019.

Gamazon ER et. al., Nat Genetics, 2015
GReX: Genetically Regulated Gene eXpression



PrediXcan

 Stage |: Estimates eQTL weights W from a penalized regression model with Elastic-
Net penalty, a combination of L; (LASSO) and L, (Ridge) penalties

. . 2 1
# = argmin (”Tg = xw|[} + 2 (alwll, +5 (1 - a)||w||§))
w

* where ||+||, denotes L, norm, ||:||; denotes Lynorm, a € [0, 1] denotes the proportion of L
penalty, and A denotes the penalty parameter

* Takes @ = 0.5 and tunes the penalty parameter A by a 5-fold cross validation

Gene expression decomposition

Gamazon ER et. al., Nat Genetics, 2015



PrediXcan

* State ll: Test gene-based association between GReX and phenotype of interest,
using individual-level or summary-level (Z-scores Z; from single variant tests) GWAS
data

¥ == T u v “ ~ * > Zﬁl(ﬁzl)
E(g(Ypheno|X*,W)| = YGReXy =y jzzlw,-xi = ; (yw;) x; ZgFUSION = e ! V = Corr(Go)
" Yt (w6,Z)
Zg,S-Predchan =& 1W";Wl I ’ E’? = Val'(GoJ]), V = Cov(Gy).

® Existing TWAS tools all assume SNP effect sizes on .
phenotype B =yw;, i=1,---,m. o*: genotype variance
e Burden test: Hy:y=0 ﬁ G,: reference genotype data

Gene expression decomposition

Gamazon ER et. al., Nat Genetics, 2015



TIGAR: Transcriptome-Integrated Genetic Association Resource
Estimates eQTL weights w from Bayesian Dirichlet Process Regression Model

e Considering gene expression levels E, of gene g
genotype data matrix X, .p of all cis-SNPs

e E, were normalized and adjusted for covariates such as
age, sex, genotype PCs, PEER factors of transcriptomic
data

e The nonparametric Bayesian Dirichlet process regression
(DPR) model is setup as:

Eg - anpwpxl +E&, € NN(OaG§I)= 63 - IG(aE’bE)

W!'NN(O'.'GEG»%L O"E.ND, DNDP(IG(CZ,[)),&), i=1,-- P

e Estimate cis-eQTL effect-sizes wp,.1 by MCMC or

Variational Bayesian Approximation Nagpal et. al, AJHG 2019



Bayesian Dirichlet Process Regression Model

Another intuitive way of viewing this nonparametric model
e o’ can be viewed as a Latent variable

e Integrating out ¢ will induce a Nonparametric prior
distribution on w;

e Equivalent to a normal mixture model for w;

+4-oa
wi ~ mN(0,620%)+ Y mN(0,62(07 +67)):
k=1
k-1

W = an(l — V), Vi ~ Beta(1,&), € ~ Gamma(ag,bg);
[=0

o ~ IG(ag,by), k=01, ,+oo.

Nagpal et. al, AJHG 2019



TIGAR

 State Il (the same procedure as PrediXcan): Test gene-based association between
GReX and phenotype of interest, using individual-level or summary-level (Z-scores
Z; from single variant tests) GWAS data

£ 2 DV L O o~ 7 _2?;1("‘7?21) _
5 1=1(MaZ) =
Zg,S-Predchan = W y O = Var(GO,l): V= COV(GD)'
* Existing TWAS tools all assume SNP effect sizes on .
phenotype B = yw;, i=1,---,m. | o*: genotype variance
e Burden test: Hy:y=0 — G,: reference genotype data

These two Z-score TWAS statistics are
equivalent when eQTL weights were derived
from standardized expression traits and cis-
SNP genotype data.

”~ e —
I 4 N
{
.
GReX
_ Genetically regulated
. expression
\ & - -
Other v
factors P

Gene expression decomposition

Gamazon ER et. al., Nat Genetics, 2015



Variance Component TWAS

¢ Tests if the phenotype variance component due to GReX, is

non-zero:

m

E[g(them;\X*aﬁ)] - E(ﬁt)x: = X*ﬁ:

i=1

Bi ~ N(0,w;°1)

* Estimated eQTL effect sizes w; from the reference panel
will be taken as SNP weights

e Variance Component test: Hy: t =0

Tang S. et. al. PLOS Genetics, 2021.
https://doi.org/10.1371/journal.pgen.1009482

i denotes the phenotype mean under the null model

Q= (Y-[)K(Y-fi), K=XWX'

W = diag(w;2, ,Wm>)

Test statistic Q follows a mixture of chi-square distributions
under the null hypothesis

P-value can be easily calculated by Davies exact method
as used by SKAT

P-value calculation is also derived for using GWAS
summary statistics


https://doi.org/10.1371/journal.pgen.1009482

Variance Component TWAS with GWAS Summary Data

Assume the phenotype mean i under Hy is O, the test statistic is given

by .
_ 2 .2
0 = ZW]- S

j=1

* 5= X,’]-Y/@2 is the single variant score statistic of the jt"* variant

* Numerator of s; which can be estimated by

* Denominator of s; is the estimated phenotype variance 6}2, which can be
estimated by,

oy> = median (Zj,jajz(n —1) + Zj,]-sz;j =1, m)

Tang S. et. al. PLOS Genetics, 2021.
https://doi.org/10.1371/journal.pgen.1009482
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TWAS of Alzheimer’s Disease by TIGAR

A)
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eQTL weights trained by Bayesian DPR model with reference transcriptomic data of brain tissue were used

Using ~4K individual-level GWAS data

Variance Component TWAS with
individual-level GWAS Data (n="4K)
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Tang S. et. al. PLOS Genetics, 2021.
https://doi.org/10.1371/journal.pgen.1009482

Burden TWAS with
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https://doi.org/10.1016/j.ajhg.2020.08.022
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TWAS of Alzheimer’s Disease by TIGAR

 eQTL weights trained by Bayesian DPR model with reference transcriptomic data of brain tissue were used
e Using IGAP summary-level GWAS data (n="~54K)
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Locus Zoom Plot of TWAS Loci of Alzheimer’s Disease by TIGAR
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TWAS vs. Mendelian Randomization (MR)

* Common Features
e Uses both eQTL (transcriptomic) and GWAS data that might be profiled for two
independent cohorts
 Test association/causality between multiple-SNPs-per-Gene and phenotype of
interest

* Two-stage TWAS is “equivalent” to a Two-Stage MR inference procedure, which fails
to account for the uncertainty of estimating eQTL weights and separate pleiotropy

e Different Features
MR methods such as Inverse-Variance-Weighted (IVW) Regression, MR-Egger, SMR,
GSMR uses Single SNP Instrument or Multiple Independent SNP Instruments

e Stage | in TWAS (e.g., PrediXcan and TIGAR) models LD among all eQTL per gene by a
multivariate regression model




MR Model

Let X denote genotype, M denote mediator, Y denote outcome
e Genetic model for M: M = By + BxuX + €

e Genetic model for Y: Y = ﬁo + BxyX + €
e Joint model for Y

Y= ﬁo -1 ﬁdirectX + BcausalM -+ &

Y = BO .n BdirectX + ﬁcausalﬁXMX + €
Y = BO .o (ﬁdirect .y ﬁcausalBXM )X +E&

m If ﬁdirect =0, BXY = ﬁcausaiﬁXMs equivalently ﬁcausa[ - BXY/ﬁXM
m |f ﬁdirect ?é 0, BX ¥y = ﬁdirect - = BcausalﬁXM

Goal: test if B...sa Significantly different from 0.

22



Test Methods

* Inverse-Variance Weighted (IVW) method : Estimate the ratio
between SNP-outcome association and SNP-exposure association
using a meta-analysis approach

 MR-Egger Regression (Bowden et al., 2015) : Weighted linear
regression of the SNP-outcome coefficients on the SNP-exposure
coefficients. Without an intercept term in the regression model, MR-
Egger slope estimate will equal to the IVW estimate.

e SMR & GSMR (Zhu et. al., 2016, Zhu et. al., 2018):




Weaker assumption V3 (exclusion restriction
assumption), Bowden et al., 2015

e Direct causal effect SNP —-Y
(Assumption IV3) is not O for all IVs

* Assume Instrument Strength
Independent of Direct Effect
(InSIDE)

* The distributions of Bgjrect,j and
Bcausai,j are independent

e Egoer regression: Causal effect of
SNP_y,. ;= M — Y can be

estlmated by the linear regression
slope of ,BX Ve .BX]M»] =1,..,]

slope Egger
' ‘ slope

o B sope

Increasing
instrument

0 y strength

Figure 2. Plot of the gene-outcome (I') vs gene-exposure (j) regression
coefficients for a fictional Mendelian randomization analysis with 15
genetic variants. The true slope is shown by a dotted line, the inverse-
variance weighted (IVW) estimate by a red line, and the MR-Egger re-
gression estimate by a blue line. Refer to text for explanation of points
(i) and (ii).
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PMR-Egger : Probabilistic Two-sample Mendelian Randomization

* Consider reference cohort (E, X,) and test cohort (E’Tg/, X,,y)inthe
following model

Lig/:/'le +X.p + € (1)
E; = ue +,£(3"B + €;. (2)
y=u,+Ea+X,y+e (3)

* Gene expression Eg, E;(unobserved); genotype data X, X,,; phenotype data y
* [:eQTL weights, shared by two cohorts

* ¥: horizontal pleiotropic effect, Hy: y = 0

* a: causal effect, Hy:a = 0

* Replacing E’Tg/ in Equation (3) by Equations (2):
y =, +X,fa+ X,y +e, (4)
Uy = U + Uy, €y = €z + €



PMR-Egger

* Incorporate multiple correlated SNP instruments in a likelihood inference
framework

Eg = Ue + X fp + €. (1)

e Unifies many existing TWAS (e.g., PrediXcan and TIGAR) and MR methods
(e.g., IVW Regression, MR-Egger, SMR, GSMR)
E; = e +,2,(3"8 + €;. (2)
y=u,+Ea+X,y+e (3)
* Test for causality of multiple-SNP-per-gene -> gene expression ->
phenotype

Ho:a:O

Yuan Z. et. al. Nature Communications, 2020.



PMR-Egger

. a b _
Test and control for horizontal Gausaty  rrarsrton|——f Pronoes |

pleiotropy Phenotype e AN
ils

Causal variant

* Horizontal pleiotropy: T [ Cr—

Transcription eQTL !
* SNP affects the outcome (test I m j c\./

P ausal variant
phenotype) through pathways : L -
other than or in addition to the L T T ' 5 /:]

. ) 1 ) l J
exposu re Va rlable (ta rget teSt Causallvan'anl Causal variant 1' JCausal variant 2
gene expression)
° H . — O Figure 1 Association between gene expression
0- y T and phenotype through genotypes. (a) A model

of causality where a difference in phenotype is
caused by a difference in genotype mediated
by gene expression (transcription). (b) Three
possible explanations for an observed
association between a trait and gene expression
through genotypes.

Yuan Z. et. al. Nature Communications, 2020.

Zhu et. al., Nature Genetics, 2016.



PMR-Egger : Inference

e Maximum Likelihood Inference Framework

* EM algorithm is used
* MLE of ¥, a are obtained from the joint likelihood based on Equations (1) and

(4)
* Apply EM algorithm to two reduced models, one without « and the other
without y, to obtain the corresponding maximum likelihoods

* Likelihood ratio test is used for testing Hy: y = 0and Hy:aa = 0
* Likelihood from the joint model vs. reduced model of y or a

* Probabilistic as estimating and testing in a maximum likelihood
framework

* See details in the Supplementary Notes of Zhu et. al., Nature
Genetics, 2016.




e

Power

0.6 -

CoMM
—+— PMR-Egger
—— TWAS
—e— LDA MR-Egger
SMR
—e— PrediXcan

0.0 H

0

002 0.003 0.004

PVE,,

0.005 0.006

0.0-%°

0

T
0.004 0.005 0.006

PVE,,

.002  0.003

0.05

0.04 +

0.03

0.02

0.01

“|~=— PMR-Egger

0.00

—e— | DA MR-Egger

—

'é:—-———————.

0

.002  0.003

T
0.004 0.005 0.006

PVE,,

0.0-8

0.

002  0.003

0.004
PVE,,

0.005  0.006

0.0

0.

002 0003 0004 0005 0006
PVE,,

0.0

0.

T T T
0.004 0.005 0.006

PVE,,

T T
002  0.003

Fig. 2: Power of different methods under various
simulation scenarios.

Power (y axis) at a false discovery rate of 0.1 to
detect the causal effect (a—d) or the horizontal
pleiotropic effect (e, f ), plotted against different
causal effect size characterized by PVE,, (x axis).

Compared methods include: CoMM (turquoise),
PMR-Egger (magenta), TWAS (blue), LDA MR-

Egger (black), SMR (orange), and PrediXcan
(purple). Simulations are performed under

different horizontal pleiotropic effect sizes: a
v=0; b y=0.0001; ¢, e y=0.0005; d, f y=0.001.

Zhu et. al., Nature Genetics, 2016.
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Fig. 6: TWAS analysis results by different methods for UK Biobank traits. a QQ plot for testing the causal effect for BMI. b
QQ plot for testing the causal effect for platelet count. ¢ Genomic inflation factor for testing the causal effect for each of
the 10 traits by different methods. d Number of causal genes identified for each of the 10 traits. e QQ plot for testing the
horizontal pleiotropic effect for BMI. f QQ plot for testing the horizontal pleiotropic effect for platelet count. g Genomic
inflation factor for testing the horizontal pleiotropic effect for each of the 10 traits. h Number of genes identified to have
significant horizontal pleiotropic effect for each of the 10 traits. For ¢, d, g, h, the number on the x axis represents 10 traits
in order: Height, platelet count, bone mineral density, red blood cell count, FEV1-FVC ratio, BMI, RDW, eosinophils count,
forced vital capacity, white blood cell count.



PMR-Egger : Limitations

* Assume equal horizontal pleiotropic effect for all test SNPs

* Developed for continuous traits
* Computationally more expensive than two-stage TWAS methods



TWAS and MR

e Uses both eQTL (transcriptomic) and GWAS data that might be profiled
for two independent cohorts

e Standard Two-stage TWAS: Test association (pleiotropy or causality)
between multiple-SNPs-per-Gene and phenotype of interest, taking eQTL
effect sizes as variant weights

* MR: Test causality between multiple-SNPs-per-Gene and phenotype of
interest, mediated through transcriptome (gene expression)

* PMR-Egger: Accounts for horizontal pleiotropy during the the causality
test between multiple-SNPs-per-Gene and phenotype of interest,
mediated through transcriptome (gene expression)




Ongoing Research Topics

* Transfer learning cross samples of different ethnicities

* Multi-tissue reference transcriptomic data (MultiXcan,
https://doi.org/10.1371/journal.pgen.1007889)



https://doi.org/10.1371/journal.pgen.1007889

TWAS Tools

* MetaXcan (PrediXcan, S-PrediXcan, MultiXcan, S-MultiXcan)
e https://github.com/hakyimlab/MetaXcan

* TIGAR
e https://github.com/yanglab-emory/TIGAR

* PMR-Egger/moPMR-Egger
* https://github.com/yuanzhongshang/PMR
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