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* Rare Variant Test
e Burden Test
* Variance Component Test

* Pleiotropy
* Model Multiple Phenotypes

e Mendelian Randomization
* Mediation Analysis



Rare Variants

Genetic variants identified in the TOPMed project (2015 - Present)

Variant Type Category # PASS # FAIL "(:::3" KT';°,.""V"(/P':S°‘;'
SNP All 438M 85M 22.9% 1.93/1.69
Singleton 202M 24M 8.5% 1.23/1.54
Doubleton 69M 8.8M 12.6% 1.61/1.74
Tripleton ~ 0.1% 142M 24M 34.9% 2.23/1.99
0.1% ~ 1% 13M 4.5M 98.2% 217 /179
1~10% 6.5M 2.9M 99.6% 1.82/1.75
>10% 5.3M 2.0M 99.8% 2.11/1.88
Indels All 33.4M 26.2M 20.1%
Singleton 15.7M 4,7M 10.1%
Doubleton 5.3M 1.8M 12.6%
Tripleton ~ 0.1% 10.7M 8.0M 26.7%
0.1% ~ 1% 2.8M 968K 88.9%
1~10% 432K 2.3M 98.5%

>10% 298K 1.4M 99.6%




Why Study Rare Variants?

e Most genetic variants are rare
e Functional variants tend to be rare

e Number of samples N needed to observe a rare variant with at least 99.9%
probability :

MAF 0.1 0.01 0.001 0.001
N 33 344 3453 34537

e Number of samples needed to achieve 80% power by single variant test
(underpowered for rare variants):

- MAF=0.0005
MAF=0.001
MAF=0.01
MAF=0.05

Required Sample Sizes
20000 30000
| 1

10000

0




Region-based (or Gene-based) Test

Test the joint effect of rare/common variants within a defined genome region (e.g.,
gene, regulatory region)

e Consider a total of p variants within a test genome region
e Genotype data: X; = (x;1, Xi2,* -+ , Xip)’, x;; = 0,1,2, for individual i
e Genetic effect-size vector g,
e Consider covariate vector Z; for individual i, with extended intercept term
e General linear regression model
E[fu)] = Zia+ X;B,

where f(-) is a link function, e.g., logistic function for dichotomous traits, identity
function for quantitative traits.

e Test region-based association

Ho:B =B .Bp) =0



Burden Test

e Assume there is a shared genetic effect across all variants, i.e., 8; = wiBpurden

e One commonly used variant weight is based on MAF,
w; =1/ \[MAF (1 - MAF))

e Equivalent to consider a Burden genotype score

C,’ - E ij,'j
J

e Model is equivalent to
ELf(,“z)] = lea T Ciﬂburden

e Region-based test is equivalent to test

HO :ﬁburden =0



Burden Test

e Score test statistic can be used
n p
T'score = Z Ci(Y; _/7(;) - Z ij.,,j(Y - /1?))9
i=1 j=1
Var(Tyeore) = C' (P - PZ(Z'PZ)'Z'P) C;

Tscore
~ N(0, 1), Under H,
‘/Vdr(Tscore)

— Let @ denote the covariate coefficients estimated under the NULL model
Elf(u)] = Za

— o = Z/a and P= ?ng, with error variance estimate }2 under NULL model,
for standard linear regression model

— i = logir ' (Zi@) and P = diag (io1(1 — f101), - - - » fton(1 — fign)) for logistic
regression model

e Sum of weighted single variant score test statistics 7'; = X! J.(Y —io),j=1,---,p.

Underpowered when genetic variants have Effect-sizes of Opposite Signs




Burden Test

 Burden test

* Cohort Allelic Sum Test (CAST, Morgenthaler & Thilly, 2006) : collapses
information on all rare variants within a region into a single dichotomous
variable per sample

* Weighted sum test (WST, Madsen & Browning, 2009) : collapses rare variants
into a single weighted average of the number of rare alleles per sample

 Limitations: all rare variants are assumed influencing the phenotype
in the same direction and with the same magnitude of effect, after
incorporating known weights




Variance Component Test

e Consider the general linear regression model

E[fuw)] = Z;a + X;B,

o Assume B, ~ N(0,w’7), sharing a common variance component 7

e Then region-based test is equivalent to test

H()ZT=O



Variance Component Test : SKAT

e Test statistic (Sum of squared weighted single variant score test statistics) :
14

e ’ e ’ —~\2
Osxar = (Y — XWWX'(Y - i) = > (w;X}(¥ - i)
j=1
e Let K = XWWX’ denote the kernel matrix, W = diag(wy,--- ,w))
e /i is estimated under the NULL hypothesis

e Oskar asymptotically follows a mixture of x7,, distribution under the NULL
hypothesis

p
2
Oskar ~ Z /1])((1)
Jj=1

e ; are eigenvalues of P)/*KP,/*, with projection matrix Py = P — PZ(Z'PZ)"'Z'P.

e The mixture of )((21) distribution can be approximated with the computationally
efficient Davies method, which will be used to calculate p-value.

Wu et al. (2011) AUHG



Power Comparisons of SKAT and Burden Tests
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Simulation-Study-Based Power Comparisons of SKAT and Burden Tests
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Empirical power at o. = 10~¢ under an assumption that 5% of the rare variants with MAF < 3% within random 30 kb regions were causal.
Top panel: continuous phenotypes with maximum effect size (|B|) equal to 1.6 when MAF = 10~*; bottom panel: case-control studies
with maximum OR = 5 when MAF = 10~*. Regression coefficients for the s causal variants were assumed to be a decreasing function
of MAF as |8;| = ¢ |log,(MAFj| (j = 1,...,p [see Figure S2]), where ¢ was chosen to result in these maximum effect sizes. From left to right,
the plots consider settings in which the coefficients for the causal rare variants are 100% positive (0% negative), 80% positive (20% nega-
tive), and 50% positive (50% negative). Total sample sizes considered are 500, 1000, 2500, and 5000, with half being cases in case-control
studies. For each setting, six methods are compared: SKAT, SKAT in which 10% of the genotypes were set to missing and then imputed
(SKAT_M), restricted SKAT (rSKAT) in which unweighted SKAT is applied to variants with MAF < 3%, the weighted sum burden test (W)
with the same weights as used by SKAT, counting-based burden test (N), and the CAST method (C). All the burden tests used MAF < 3% as
the threshold. For each method, power was estimated as the proportion of p values < & among 1000 simulated data sets.

Sample Sizes Required for Reaching 80% Power
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Figure 2. Sample Sizes Required for Reaching 80% Power
Analytically estimated sample sizes required for reaching 80% power to detect rare variants associated with a continuous (top panel) or
dichotomous phenotype in case-control studies (half are cases) (bottom panel) at the o.= 10, 10~2, and 10~? levels, under the assump-
tion that 5% of rare variants with MAF < 3% within the 30 kb regions are causal. Plots correspond to 100%, 80%, and 50% of the causal
variants associated with increase in the continuous phenotype or risk of the dichotomous phenotype. Regression coefficients for the s
causal variants were assumed to be the same decreasing function of MAF as that in Figure 1. The absolute values of Required total sample
sizes are plotted again the maximum effect sizes (ORs) when MAF = 10, Estimated total sample sizes were averaged over 100 random 30

kb regions.

11



Practices of Rare Variant Tests

OQC

* Filter out common variants (especially those associated with the
phenotype of interest)

e Group by functional annotations (i.e., known biological functions of
the genetic variants)

* Account for possible confounding covariates: age, sex, genotype PCs,
etc.

* Genomic control factor and meta-analysis methods also apply
* Visualize by Manhattan and QQ plots



Pleiotropy

* Pleiotropy: One gene can affect Trait 1
multiple traits

* Example pleiotropy in chickens and Gene X | Trait 2
the Frizzle Trait:

In 1936, researchers Walter Landauer and
Elizabeth Upham observed that chickens
that expressed the dominant frizzle gene
produced feathers that curled outward
rather than lying flat against their bodies
(Figure 2). However, this was not the only
phenotypic effect of this gene — along
with producing defective feathers, the
frizzle gene caused the fowl to have
abnormal body temperatures, higher
metabolic and blood flow rates, and
greater digestive capacity. Furthermore,
chickens who had this allele also laid fewer
eggs than their wild-type counterparts,
further highlighting the pleiotropic nature
of the frizzle gene.

Trait 3

Figure 2: A chicken with the frizzle gene
© 2004dRichard Blatchford, Dept. of Animal Science UC Davis. All rights
reserved. &



Example Pleiotropy at APOE E4 allele (rs429358) in Human

19: 45,411,941 T/ C (rs429358)

Nearest gene: APOE
AF ranges from 0.15 to 0.16
View on UCSC , GWAS Catalog , dbSNP , PubMed (224 results) , Clinvar

Save PNG | [ Save SVG

80 : Dementias . 4,
?60 Hyperlipidemia ‘, Disorders of lipoid metabolism
20U+ H
i Hypercholesterolemla:’ “. Delirium dementia and amnestic and other cognitive disorders
_3: Alzheimer's dlsease.-':
20

o
]
N
»
2
N
F
N
° B >p
-3

% 2 % o & % % 2,
% % % % s, %, %, % %, %, A %, A
) ) % % % %
%, % %y %, * %, % K3 % % 0, % %
% %, %, %, 0 > % % 8,
J 2, e ) % % %, ¢ () L) )y
- K > 5, 0, % %
%, . % % % % % & % %, %
% %, 9 %, L2 i
k) O % %, %,
. % % %, %
%% %
%,
C

Search... "427.21", "Diabetes", etc. 1403 total codes

First 4= Previous 2 3 4 5 Next= Last

Category Phenotype P-value Effect Size (se) Number of samples
mental disorders Dementias 1.9e-84 1.4 (0.074) 956 / 402383
endocrine/metabolic Hyperlipidemia 3.0e-68 0.20 (0.012) 35844 / 373034
endocrine/metabolic Disorders of lipoid metabolism 6.0e-68 0.20 (0.012) 35927 / 373034
endocrine/metabolic Hypercholesterolemia 6.2e-66 0.21 (0.012) 33242 / 373034
mental disorders Delirium dementia and amnestic and other cognitive disorders 3.9e-60 0.79 (0.048) 1970/ 402383
mental disorders Alzheimer's disease 2.3e-58 1.9(0.12) 404 / 402383

atc Coronary atherosclerosis 1.7e-21 0.14 (0.015) 20023 / 377103

atc Ischemic Heart Disease 3.9e-16 0.10 (0.012) 313557377103
mental disorders Vascular dementia 6.1e-16 1.3 (0.16) 189/ 402383
mental disorders Neurological disorders 5.7e-12 0.20 (0.029) 4655 / 402383
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https://www.snpedia.com/index.php/Rs429358

Testing Genetic Pleiotropy

* Hy: No trait (Y = (Y, ..., Yx)) is associated with the test SNP x

* F-statistic (assume normally distributed quantitative traits)
* Im(Y ~ x) : multiple response variables
* Im(x ~Y) : reverse regression with multiple explanatory variables
e Test canonical correlation of Y~ x (used by plink.multivariate, Ferreira &
Purcell, Bioinformatics, 2019)

* Test association between top Principal Component of Y = (Y3, ..., Yx)
and SNP x

15



Canonical Correlation Analysis (CCA)

* Assume normally distributed traits: Y,,xx = (Y1, ..., Yx)

* SNP genotype vector: X«

e CCA extracts the linear combination of traits that explain the largest
possible amount of the covariation between the marker and all traits

b’ = arg_max_corr(x,b'Y)
* Solving for b’ that maximizes p = corr(x,b’Y)

» Test statistic Wilk’s lambda : 1 = 1 — p?,

* Canonical correlation estimate p is given by the square root of the eigenvalue of
1 1

Z%inYziﬁzﬁxzxi
* bis an eigenvector of Z;}Zy,xzy?,glczxy
* F-approximation: Fix , g1 = [(1 — A)4] * [

n—K—l]



Performance of the multivariate test of association.
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* 60% heritability

* 20% minor allele
frequency

* r=0.2,0.4,0.6
denoting residual
cross-trait
correlation

Bioinformatics, Volume 25, Issue 1, 1 January
2009, Pages 132-133,
https://doi.org/10.1093/bicinformatics/btn563

The content of this slide may be subject to copyright: please
see the slide notes for details.
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https://doi.org/10.1093/bioinformatics/btn563

Mediation Analysis

* Mediation Analysis seeks to identify the mechanism that the

Independent Variable (Instruments) affects the Dependent Variable

(Response) through the Mediator Variable

Independent
Variable

e

A

/ Mediator Variable

N\

B

3

Dependent
Variable
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Mendelian Randomization

* Assumptions for Instruments " Genotype |
(Didelez and Sheehan, 2007). | g

1. Not associated with any confounder \

of the Exposure-Outcome association Exposure 2 Citcoms
(V1) ,

2. Associated with the \ /
Exposure/Mediator (IV 2)

3. Conditionally independent of the Confounders; reverse
outcome given the Exposure and causation; bias

confounders (I1V 3)

19



Mendelian Randomization

 Mendelian Randomization uses genetic variants as instruments for

Mediation Analysis

* Under the Mendel’s Second Law, genotypes are assigned randomly when
passed from parents to offspring during meiosis (independent assortment)

* Alternative of traditional randomized trials to estimate a putative causal
effect of the mediator on phenotype

* Instruments are proxies of the exposure that are free of confounders




Pleiotropy vs. Mediation

* Pleiotropy

e Mediation

Genotype

Trait 1

Gene X

Trait 2

Trait 3

N\

Exposure

L4

\

Outcome

y,

Confounders; reverse
causation; bias
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Model

Let X denote genotype, M denote mediator, Y denote outcome
e Genetic model for M: M = By + BxuX + €

e Genetic model for Y: Y = Eo + BxyX + €
e Joint model for Y

Y= BO B BdirectX o ﬁcausalM +E€

Y = ﬁO + ﬂdirectX T ﬁcausalBXMX + €
Y = ﬁO + (Bdirect + BcausalﬁXM )X + €

m f Ba'irect =0, ﬁXY — ﬁcausaliBXMs eqUiValenﬂY ﬁcausal = ﬁXY/BXM
m f Bdirect ?‘é O, BX ) ﬁdirect + ﬁcausal)BXM

Goal: test if B Significantly different from 0.

22



Test Methods

* Inverse-Variance Weighted (IVW) method : Estimate the ratio
between SNP-outcome association and SNP-exposure association
using a meta-analysis approach

 MR-Egger Regression (Bowden et al., 2015) : Weighted linear
regression of the SNP-outcome coefficients on the SNP-exposure
coefficients. Without an intercept term in the regression model, MR-
Egger slope estimate will equal to the IVW estimate.

e SMR & GSMR (Zhu et. al., 2016, Zhu et. al., 2018):




Inverse-Variance Weighted (IVW) method

* Single variant test results are available for testing M ~ SNP; X;
* Single variant test results are available for testing Y ~ SN P; X;

* Assume no direct causal effect SNP; — Y (Assumption IV3), the causal effect
mediated through M is estimated by )

N IBX]'Y

.Bcausal,j = 3
BX]'

* With multiple genetic variants (in Iinkage equilibrium), the above causal effect of
SNP, = M — ¥ can be estimated using the welghted average of the ratio
estimates per SNP (analogous to the inverse-variance meta-analysis method)

2]_1,...,] W]:Bcausal,]
Xj=1,. W

lgcausal = yWj = IBX]-M/O-{YNX].}



VW Example
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Figure 2. Fictional example of a Mendelian randomization analysis with 10 genetic variants—six valid instrumental variables (hollow circles)
and four invalid instrumental variables (solid circles) for finite sample size (left) and infinite sample size (right) showing IVW (solid line) and simple
median (dashed line) estimates compared with the true causal effect (dotted line). The ratio estimate for each genetic variant is the gradient of the
line connecting the relevant datapoint for that variant to the origin; the simple median estimate is the median of these ratio estimates.
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Weaker assumption V3 (exclusion restriction
assumption), Bowden et al., 2015

e Direct causal effect SNP —-Y
(Assumption IV3) is not O for all Ivs

* Assume Instrument Strength
Independent of Direct Effect
(InSIDE)

* The distributions of Bingirect,j and
Bcausai,j are independent

e Egger regression: Over causal effect
of SNP-;, _; > M — Y can be

estlmated by the linear regression
slope of ,BX Ve .BX]M»] =1,..,J]

o |ncreasing

| | I | | 1 1 I T instrument

y strength

Figure 2. Plot of the gene-outcome (I") vs gene-exposure (7) regression
coefficients for a fictional Mendelian randomization analysis with 15
genetic variants. The true slope is shown by a dotted line, the inverse-
variance weighted (IVW) estimate by a red line, and the MR-Egger re-
gression estimate by a blue line. Refer to text for explanation of points
(i) and (ii).
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Example MR Studies of Blood Pressure and Coronary Artery Disease
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Figure 4. Genetic associations with blood pressure and coronary artery disease risk from 29 variants—funnel plots of minor allele frequency corrected
genetic associations with blood pressure (?f) against causal estimates of blood pressure on CAD based on each genetic variant individually ( ;) Left:

funnel plot for systolic blood pressure. Right: funnel plot for diastolic blood pressure. The inverse-variance weighted (IVW) and MR-Egger causal ef-
fect estimates are also shown.
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Study multi-omics data by MR methods

* Test genetic-phenotype causality mediated through epigenome (DNA
methylation, histone markers), transcriptome (gene expressions),
proteome (protein abundance)

e Select IV SNPs

« GWAS
* Molecular Quantitative Trait Loci (e.g., eQTL)

* Apply MR methods
* MR-Egger, Bowden et. al., 2015
* SMR, Zhu et. al., 2016
e GSMR, Zhu et. al., 2018
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Profile Gene Expression Levels by RNA-sequencing

Samples of interest

\

1),

Condltlon 1

(e.g. tumor)

Map to genome, transcriptome,
and predicted exon junctions

Condition 2
(e.g. normal)

Intron pre-mRNA

Transcript fa

M

Short reads =—:

Short Eads

split by intron

|

Downstream analysis

Isolate RNAs

Poly(A) tail

Unsequenced RNA RNA reads
N

Short insert

Generate cDNA, fragment,

size select, add linkers

100s of millions of paired reads
10s of billions bases of sequence
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eQTL

* Consider the profiled gene expression levels as the quantitative trait Y in the
following single variant linear regression model:

Y =By +aC + X +¢, e~N(0,0%)
* X represents the genotype data (0, 1, 2) or dosage [0, 2] of the test SNP

* (C represents the confounding covariates or other environmental variables
* € represents the error term, other unknown factors

* eQTL :SNPs significantly associated with a gene expression quantitative trait
o: b1 = 0 is significantly rejected) are referred as expression Quantitative Trait

Loci
e Cis-eQTL : nearby the test geneée.g., located within the +-1MB region of the
transcription starting site). Need to screen thousands SNPs per gene.

* Trans-eQTL : distant from the test gene (e.g., located out of the +-1MB region of
the transcription starting site, or on different chromosome). Need to screen
~10M SNPs per gene.




Summary data-based Mendelian Randomization (SMR)
/hu et. al., 2016.

a b
Causality -Transcription Phenotype
. GWAS
* Consider SNP genotype/IV z, Phenctype I ; N .
. Causal variant
phenotype/responsey, .
1 1 T iotro ranscription enotype
mediator/gene expression x S i b R \/
* Study the causal effects from SNPs I m Caiiad viciaik
/ IVS .-> Gene ExpreSSIon / Genotype A.A Ala aa e
Mediator -> Disease/Outcome N—— N/
b xy — be / bZX Causallvariant Causal variant 1' ’Causal variant 2
* Use Summary'level GWAS ar?d Figure 1 Association between gene expression
eQTL data (p-values, effect sizes, and phenotype through genotypes. (a) A model
effect size variances, sample sizes, of causality where a difference in phenotype is

caused by a difference in genotype mediated
by gene expression (transcription). (b) Three
possible explanations for an observed
association between a trait and gene expression
through genotypes.

minor allele frequencies)
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Available Tools

* R library “SKAT”: Rare variant test
https://cran.r-project.org/web/packages/SKAT/vignettes/SKAT.pdf

* PheWeb : Visualize Biobank GWAS results of multiple phenotypes,
search phenotypes, genes, SNPs

https://pheweb.org/

 Test pleiotropy effect : plink.multivariate
https://genepi.qimr.edu.au/staff/manuelF/multivariate/main.html

* GSMR : Generalized Summary-data-based Mendelian Randomization
https://yanglab.westlake.edu.cn/software/gsmr/
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https://cran.r-project.org/web/packages/SKAT/vignettes/SKAT.pdf
https://pheweb.org/
https://genepi.qimr.edu.au/staff/manuelF/multivariate/main.html
https://yanglab.westlake.edu.cn/software/gsmr/

Lecture on 03/01

* Transcriptome-wide Association Studies (TWAS)
* PrediXcan based on Elastic-Net model (Gamazon et. al. Nature Genetics,
2015).
* TIGAR based on Bayesian Dirichlet Process Regression model (Nagpal et. al,
AJHG 2019).

* PMR-Egger based on a MR likelihood framework that unifies existing TWAS
and MR methods (Yuan et. al, Nature Communications, 2020).



