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Outline

• Linear Mixed Model (LMM)
•Heritability Estimation by REML
• Fine-map GWAS Results
• Conditional Analysis
• Bayesian Method (FINEMAP)

•Multivariate GWAS
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How to Address Population Stratification?
• Meta-analysis
• Account for top genotype Principal Components in GWAS
• Adjust false positives by Genomic Control Factor
• Check GWAS results by QQ plot
• Linear Mixed Model
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Linear Mixed Model (LMM)

• Accounts for population stratification and relatedness
• Consider the following standard linear mixed model:

!" ×$ = &' + )* + +"×,-,×$ + .
-,×$~012, 0, 567$8

.~012(0, 67$:")
• !" ×$ denotes the phenotype vector;
• ) denotes the genotype vector of the test SNP;
• & denotes the confounding covariates: age, sex, top PCs, etc.;
• -,×$ denotes the random effect size vector with variance-covariance matrix 567$8; 

taking m = =, + = :" for population based GWAS;
• 8 is a known >×> relatedness matrix
• :" is an n×= identity matrix 

• . denotes the error vector with variance-covariance matrix 67$:".
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Linear Mixed Model (LMM)

• Efficient statistical inference algorithm used by Genome-wide Efficient 
Mixed-Model Association (GEMMA) (X. Zhou & M. Stephens, Nature 
Genetics, 2012).
• Obtain maximum-likelihood estimates (MLEs)
• Obtain restricted/residual maximum-likelihood (REML) estimates 
• Calculate exact test statistics
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Log-likelihood and Log-REstricted Likelihood 
Functions

• MLE !", $%, and REML '̂
can be easily obtained 
if ( is known. 

• MLE of !", $% do not 
depend on '̂ .

• REML '̂ is an unbiased 
estimator for residual 
variance.
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If ! is Known
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Optimizing log-likelihood and log-REstricted likelihood 
functions with respect to !
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Optimizing log-likelihood and log-REstricted
likelihood functions with respect to !
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Efficient computation matters

• Use Brent’s method to 
provide an initial value
• Estimate ! by Newton-

Raphson’s method
• Simplify trace terms 

and vector-matrix-
vector product terms
• Use the recursion 

properties of the trace 
terms and vector-
matrix-vector product 
terms
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Test Statistics and P-values
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SNP Heritability 
• SNP heritability (i.e., narrow sense heritability): the proportion of total phenotype 

variation explained by additive genetic effects
• Estimated using GWAS significant SNPs
• Estimated using SNPs with GWAS p-values < 0.05
• Estimated using genome-wide genotypes

• Missing heritability: Big gap between SNP heritability estimated based on the 
standard linear regression model and the broad sense heritability
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REML for SNP Heritability

• Assume LMM under the infinitesimal genetic architecture (all SNPs 
contributed an equal small amount to the heritability) :

!" ×$ = & + ("×$ + )
("×$~+,-" 0, 0123"×"
)~+,-"(0, 0526"×")

• SNP heritability: ℎ2 = 9:;
<=>(?)

• Unbiased REML estimate for 012 would give us the estimated 

heritability @ℎ2 =
@9:;

A=>(?)
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Table 1 Estimation of phenotypic variance explained from genetic 
relationships among unrelated individuals by restricted maximum 
likelihood (Jian Yang et. al. Nature Genetics, 2010).

14



Missing Heritability

• Most of the heritability is not missing but has not previously been 
detected because the individual effects are too small to pass stringent 
significance tests.
• Where to “find” the missing heritability?
• Incomplete linkage disequilibrium between causal variants and genotyped 

SNPs?
• Genotype imputation
• Whole genome sequencing

• Modeling LD of genome-wide variants?
• Multivariate linear regression model

• Rare variants?
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Fine-mapping GWAS Results
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Visualize GWAS Loci by Locus Zoom Plot
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Fritsche L.G. 
et al. Nat 
Genet, 2016.



Why LD is Important for Association Studies?

• Hypothesis: SNPs in strong LD with disease variant are good proxies for 
disease variant

• If testing (unobservable) disease variant for association would yield chi-
squared statistic X2, testing variant in LD yields r2X2 (useful for meta-
analysis)

Balding, 2006
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Fine-mapping GWAS Results

• Hypothesis: Only a small amount of genetic variants (dozens or 
hundreds vs. millions) would be true causal variants
• Most significant GWAS signals, i.e., significant SNPs, are located in 

non-coding regions
• All SNPs in LD (i.e., highly correlated) with the nearby most significant 

GWAS signal are likely to be tested with significant p-values
• Fine-map GWAS results: pinpointing potential true causal SNPs (true 

biological molecular mechanisms) from all SNPs that are in LD
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Fine-map GWAS Results

• Conditional analysis
• Fine-mapping using GWAS summary statistics and accounting for LD
• Conducted per risk locus with significant GWAS signals (region, e.g., +-

5KB)

20



Conditional Analysis

Fritsche L and Pasaniuc B and 
Price AL, Nat. Rev. 2017
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Conditional Analysis
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Conditional Analysis

• Informative about the number of complementary sources of 
association signals within the region
• Fails to provide probabilistic measures of causality for individual 

variants
• Not accounting for functional annotations (i.e., biological functions) 

of SNPs
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Bayesian Method for Fine-mapping

• Existing methods/tools using the same Bayesian framework:
• PAINTOR (Kichaev et al., 2014, Kichaev and Pasaniuc, 2015)
• CAVIAR (Hormozdiari et al., 2014)
• CAVIARBF (Chen et al., 2015)
• FINEMAP (Benner et al., 2016)

• Requires only GWAS summary statistics and reference LD

• Provide probabilistic measures of causality for individual variants
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Bayesian Method for Fine-mapping

• Likelihood based on Multivariate Linear Regression Model
! = #$ + &, &~) 0, +,-

• MLE estimates of $ depends on column-standardized #, ! only 
through SNP correlation (LD) matrix . and single-SNP Z-score test 
statistic 0̂ :

1$ = #2# 34#2! = 53
4
,+.340̂

. = 534#2#, 0̂ = #2!
5+

678( 1$) = +, #2# 34 = 534+.34
; 1$ = $
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Bayesian Method for Fine-mapping

• Single-SNP Z-score test statistic "̂ can be obtained from GWAS 
summary statistics
• SNP correlation matrix # can be approximated from a reference panel 

with the same ethnicity
• The likelihood function for $ can be approximated by

%$~'()($, (,-( %$))
• Use a Bayesian approach with a prior distribution to account for 

sparsity among causal effects
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Priors for ! with a binary indicator vector "
• Assume an indicator vector " : "# = 1 if the &th variant has non-zero causal 

effect !# ≠ 0; "# = 0 if !# ≠ 0.
• For non-zero effect sizes, the likelihood is given by

!|" ~ +,-(0, 01232∆5)
Δ8: Diagonal matrix with " on the diagonal

• 32 can be taken as 1 for quantitative traits or 1/(; 1 − φ ) with ;
denoting the proportion of cases among > individuals
• Assuming standardized phenotype vector
• Assuming no other confounding covariates 

• Taking 012 = 0.052 means with 95% probability a causal SNP explains less 
than 1% of the phenotype variation (FINEMAP)
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Prior of binary indicator vector ! with respect 
to the number of assumed true causal SNPs

• "# = Pr # () * +,-.,/ 012. , * = 1,… , 6; 6 ≪ 9 total number 
SNPs
• ": = 0, assuming there is at least one causal SNP for the fine-mapped 

region
• Assume the same probability for each configuration with * causal 

SNPs (FINEMAP)

" ! = "#/ 9
* ,  ∑>?@A !> = *
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Likelihood function of indicator vector ! by 
integrating out "
• Posterior distribution of the indicator vector ! infers	the	posterior	
causal	probability	per	SNP	:	P(!|:, <)
• Likelihood function of indicator vector ! by integrating out ":

L ! = P : !, < = ∫ A : ", <)A(" ! B"
= C D" 0, FG HI JK + MN

GFGΔP
= C R̂ 0, I + IΣPI , ΣP = HMN

GΔP
ΔT: Diagonal matrix with ! on the diagonal

• The likelihood function U(!) need to be evaluated per !
• Computational efficiency is needed because of all ∑WJKX Y

Z causal 
configurations
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Evaluate likelihood function !(#) by FINEMAP 
• Partition &̂ into components for the Causal SNPs &̂' and Non-causal 

SNPs &̂(
• Partition R, Σ*, and +Σ*+

• Use the properties of conditional multivariate normal distribution

Σ*= Σ'' 0
0 0

+ + +Σ*+ =
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Evaluate likelihood function !(#) by FINEMAP 
• Rewrite the marginal likelihood function !(#) :

! # = & (̂ #, *, Σ, = - (̂ 0, * + *Σ,* = & (̂0 #, (̂1, *, Σ, & (̂1|#, *11, Σ11
= - (̂1 0, *11 + *11Σ11*11 -((̂0|3 (̂0 (̂1 , 456((̂0|(̂1))

NULL: ! # = 0 = & (̂ # = 0, * = - (̂1 0, *11 -((̂0|3 (̂0 (̂1 , 456((̂0|(̂1))

• Bayes factor for assessing the evidence with a given # against the null model using only causal SNPs 
(calculation only involves causal SNPs). 

Bayes factor (BF) is a likelihood ratio of the 
marginal likelihood of two competing 
hypotheses 

31



Posterior for !
• Unnormalized posterior probability

P ! #, % = '( !:*+,, ∗ .// 1
2

• Can be normalized over all ∑/456 1
2 causal configurations

• A Shotgun Stochastic Search (SSS) algorithm (Hans et al. 2007) was 
used by FINAMAP to rapidly evaluate many configurations and is 
designed to discover especially those with highest posterior 
probability 
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Shotgun 
Stochastic 
Search (SSS) 
algorithm
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Single-SNP Bayes factor

• Marginal posterior probability that the !th SNP is causal, i.e., single-
SNP inclusion probability:

• Single-SNP Bayes factor
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Fine-mapping accuracy
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Account for LD in GWAS by Multivariate 
Regression Model
• Consider the multivariate regression model with all genome-wide 

variants in the genotype matrix !
" = !$ + &, &~) 0, +,-

• Variable selection is needed
• Memory and computation issues for ~10 Million SNPs
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LASSO : Least Absolute Shrinkage and 
Selection Operator
• Lasso-penalized least squares objective function

• Tunning penalty parameter ! (S. Yang et. al., Bioinformatics, 2020).
• Solve for estimates of genetic effect sizes: "
• R function “glmnet()”
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Bayesian Variable Selection Regression
• Consider the multivariate regression model with a point-and-spike prior on 
!"

# = %! + ', '~* 0, ,-./
!"~0* 0, ,-.12

3 + 1 − 0 67 !" , 8 = 1,… ,:
12
3~/;<=>?=@A::A B., B3 , 0~C=DA A, E

,~@A::A BF, BG ,

• Assume an indicator vector H, that is,
H"~C=>;IJ88K 0

• Inference goal: estimate !", L H" , 12
3, 0

• Approach: Monte Carlo Markov Chain (MCMC) (Guan and Stephens, 2011)
• Convergence would be an issue for studying ~10 Millions SNPs

39



Account for Functional Annotation

• Prioritize functional SNPs
• Quantify enrichment of each 

type of functional SNPs with 
respect to GWAS 
associations
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Bayesian Functional GWAS
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J. Yang et. al. AJHG. 2017
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Apply BFGWAS to Study Age-related Macular 
Degeneration (AMD) 
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Enrichment Results
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Available Tools

• GEMMA: GWAS and SNP heritability estimation by LMM, BVSR
https://github.com/genetics-statistics/GEMMA

• FINEMAP: Fine-mapping GWAS results
http://www.christianbenner.com

• BFGWAS: Bayesian Functional GWAS
https://github.com/yjingj/bfGWAS
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Topics for Next Lecture

• Rare Variant Test
• Burden Test
• Variance Component Test

• Pleiotropy 
• Model Multiple Phenotypes

• Mendelian Randomization 
• Mediation Analysis
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