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Outline

• Fine-map GWAS Results
• Conditional Analysis
• Bayesian Methods: FINEMAP
• Based on the “Sum of Single Effects” model: SuSiE

•Bayesian Functional GWAS
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Fine-mapping GWAS Results
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Visualize GWAS Loci by Locus Zoom Plot
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Fritsche L.G. 
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Linkage Disequilibrium (LD)

• Definition in Population Genetics 
• Linkage Disequilibrium (LD) is the non-random association of alleles at 

different loci in a given population.

• Why nearby markers are likely to be correlated?

• The origin of LD?
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Linkage Disequilibrium (LD)

• Consider the history of two neighboring single nucleotide 
polymorphism (SNP)
• SNPs exist today arose through ancient mutation events…
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Linkage Disequilibrium (LD)

• One SNP arose first and then the other …
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Linkage Disequilibrium (LD)

• Recombination generates new arrangements for the ancestral alleles
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Linkage Disequilibrium (LD)

• Chromosomes are mosaics

• Extent and conservation of mosaic pieces depends on
• Recombination rate
• Mutation rate
• Population size
• Natural selection

• Combinations of alleles at very close markers reflect ancestral haplotypes
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Quantify Linkage Disequilibrium (LD)

• LD is defined as the difference between the observed frequency of a particular 
combination of alleles at two loci and the frequency expected for random 
association.
• Allele frequency

• 𝑃!, 𝑃", 𝑃! + 𝑃" = 1
• 𝑃#, 𝑃$, 𝑃# + 𝑃$ = 1
• 𝑃!# = 𝑃!𝑃# 
    if and only if alleles A, B are independent

• Minor Allele Frequency (MAF)
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Boundaries for DAB 
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Normalized Linkage Disequilibrium Coefficient
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Estimate DAB
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Measuring LD with r2

18

• Define a random variable XA to be the number allele A at the first 
marker, with values 0, 1, 2;
• Define a random variable XB to be the number of allele B at the 

second marker, with values 0, 1, 2;
• XA follows a Binomial(2, pA); XB follows a Bionomial(2, pB) distribution.
• Correlation between these two random variables is given by

𝑟&' =
𝐶𝑜𝑣(𝑋&, 𝑋')

𝑉𝑎𝑟 𝑋& 𝑉𝑎𝑟(𝑋')
=

𝐷&'
𝑝& 1 − 𝑝& 𝑝'(1 − 𝑝')

𝑟&'( =
𝐷&'(

𝑝& 1 − 𝑝& 𝑝'(1 − 𝑝')
=

𝐷&'(

𝑝& 𝑝) 𝑝'(𝑝*)



Properties for r2

• Ranges between 0 and 1
• 1 means two markers provide identical information, referred to as Perfect LD
• 0 means two markers are in Perfect Equilibrium

• Raw r2 from CHR22
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Why LD is Important for Association Studies?

• Hypothesis: SNPs in strong LD with disease variant are good proxies for 
disease variant

• If testing (unobservable) disease variant for association would yield chi-
squared statistic X2, testing variant in LD yields r2X2 (useful for meta-
analysis)

Balding, 2006
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Fine-mapping GWAS Results
• Hypothesis: 
• Only a small number of genetic variants (dozens or hundreds vs. millions) 

would be true causal variants
• Problem: 
• Most significant GWAS signals, i.e., significant SNPs, are located in non-coding 

regions
• All SNPs in LD (i.e., highly correlated) with the nearby most significant GWAS 

signal are likely to be tested with significant p-values
• Fine-mapping: 
• Pinpointing potential true causal SNPs (true biological molecular mechanisms) 

from all SNPs that are in LD
• Conducted per risk locus with significant GWAS signals (region, e.g., +-5KB)
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Fine-mapping GWAS Results
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Fine-mapping: Conditional Analysis

Fritsche L and Pasaniuc B and 
Price AL, Nat. Rev. 2017
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Conditional Analysis
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COnditional and JOint Analysis (COJO) by GCTA
• Implements stepwise variable selection requiring only GWAS summary 

statistics
1. Start with a model with the most significant SNP in the single-SNP meta-analysis 

across the whole genome with P value below a cutoff P value, such as 5 × 10−8 .
2. For the ith step, calculate the P values of all the remaining SNPs conditional on the 

SNP(s) that have already been selected in the model. To avoid problems due to 
collinearity, if the squared multiple correlation between a SNP to be tested and the 
selected SNP(s) is larger than a cutoff value, such as 0.9, the conditional P value for 
that SNP will be set to 1.

3. Select the SNP with minimum conditional P value that is lower than the cutoff P 
value. However, if adding the new SNP causes new collinearity problems between 
any of the selected SNPs and the others, we drop the new SNP and repeat this 
process.

4. Fit all the selected SNPs jointly in a model and drop the SNP with the largest P 
value that is greater than the cutoff P value.

5. Repeat (2), (3) and (4) until no SNPs can be added or removed from the model.
• GCTA software implementation (Jian Yang et al. 2011).
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Conditional Analysis

• Informative about the number of complementary sources of 
association signals within the region

• Fails to provide probabilistic measures of causality for individual 
variants

• Not accounting for functional annotations (i.e., biological functions) 
of SNPs
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Account for LD in GWAS by Multivariate 
Regression Model
• Consider the multivariate regression model with all genome-wide 

variants in the genotype matrix 𝑋

𝑦 = 𝑋𝛽 + 𝜖, 	𝜖~𝑁 0, 𝜎!𝐼

• Variable selection is needed

• Memory and computation issues for ~10 Million SNPs
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LASSO : Least Absolute Shrinkage and 
Selection Operator
• Lasso-penalized least squares objective function

• Tunning penalty parameter 𝜆 (S. Yang et. al., Bioinformatics, 2020).
• Solve for estimates of genetic effect sizes: 𝛽
• R function “glmnet()”
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Bayesian Variable Selection Regression (BVSR)
• Consider the multivariate regression model with a point-and-spike prior on 
𝛽!

𝑦 = 𝑋𝛽 + 𝜖, 	𝜖~𝑁 0, 𝜏"#𝐼 	
𝛽!~𝜋𝑁 0, 𝜏"#𝜎$% + 1 − 𝜋 𝛿& 𝛽! , 𝑙 = 1, … ,𝑚
𝜎$
%~𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎 𝑘#, 𝑘% , 𝜋~𝐵𝑒𝑡𝑎 𝑎, 𝑏

𝜏~𝐺𝑎𝑚𝑚𝑎 𝑘', 𝑘( ,
• Assume an indicator vector 𝛾, that is,

𝛾!~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜋
• Inference goal: estimate 𝛽! , 𝐸 𝛾! , 𝜎$%, 𝜋
• Approach: Monte Carlo Markov Chain (MCMC) (BIMBAM: Guan and 

Stephens, 2011)
• Convergence would be an issue for studying ~10 Millions SNPs
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Parameters of Interest

• 𝜋 : Genome-wide causal probability for a SNP

• 𝛽+: Genetic effect size of SNP 𝑙

• 𝐸 𝛾+ :	Posterior	inclusion	probability	(PIP),	aka,	posterior	causal	
probability

• 95%	credible	set	S:	Pr(effect	variable	in	S)	≥	95%
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BVSR quantifies uncertainty in variable selection.
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36
PIP: Posterior Inclusion Probability, aka, Posterior Causal Probability.
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Example of Two True Causal SNPs, each has one nearby SNP with LD=1



Bayesian Method for Fine-mapping

• Existing methods/tools assuming the same BVSR framework:
• CAVIAR (Hormozdiari et al., 2014) : Enumeration
• FINEMAP (Benner et al., 2016) : Stochastic search
• DAP-G (Wen et al., 2016): Deterministic approximation

• Requires only GWAS Summary Statistics and Reference LD

• Provide probabilistic measures of causality for individual variants

40



Bayesian Fine-mapping using GWAS Summary 
Statistics

• Likelihood based on Multiple Linear Regression Model
𝑦 = 𝑋𝛽 + 𝜖, 	𝜖~𝑁 0, 𝜎(𝐼

• MLE estimates of 𝛽 depends on column-standardized (mean 0, 
standard deviation 1) 𝑋, 𝑦 only through SNP correlation (LD) matrix 
𝑅 and single-SNP Z-score test statistic �̂� :

\𝛽 = 𝑋,𝑋 -.𝑋,𝑦 = 𝑛-
.
(𝜎𝑅-.�̂�

𝑅 = 𝑛-.(𝑋,𝑋), 	 �̂� =
𝑋,𝑦
𝑛𝜎

𝑉𝑎𝑟( \𝛽) = 𝜎( 𝑋,𝑋 -. = 𝑛-.𝜎𝑅-.
𝐸 \𝛽 = 𝛽
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Bayesian Fine-mapping using GWAS Summary 
Statistics

• Single-SNP Z-score test statistic �̂� can be obtained from GWAS 
summary statistics
• SNP correlation matrix 𝑅 can be approximated from a reference panel 

with the same ethnicity
• The likelihood function for 𝛽 can be approximated by

\𝛽~𝑀𝑉𝑁(𝛽, 𝑉𝑎𝑟( \𝛽))
• Use a Bayesian approach with a prior distribution to account for 

sparsity among causal effects
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Priors for 𝛽 with a binary indicator vector 𝛾 

• Assume an indicator vector 𝛾 : 𝛾! = 1 if the 𝑙th variant has non-zero causal 
effect 𝛽! ≠ 0; 𝛾! = 0 if 𝛽! ≠ 0.
• For non-zero effect sizes, the likelihood is given by

𝛽|𝛾	~	𝑀𝑉𝑁(0, 𝑠$
%𝜎%∆))

   Δ!: Diagonal matrix with 𝛾 on the diagonal
• 𝜎% can be taken as 1 for quantitative traits or 1/(𝜑 1 − φ ) with 𝜑 

denoting the proportion of cases among 𝑛 individuals
• Assuming standardized phenotype vector
• Assuming no other confounding covariates 

• Taking 𝑠$% = 0.05% means with 95% probability a causal SNP explains less 
than 1% of the phenotype variation (FINEMAP)
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Prior of binary indicator vector 𝛾 with respect 
to the number of assumed true causal SNPs

• 𝑝/ = Pr #	𝑜𝑓	𝑘	𝑐𝑎𝑢𝑠𝑎𝑙	𝑆𝑁𝑃𝑠 , 𝑘 = 1,… , 𝐾; 	 𝐾 ≪ 𝑚 total number 
SNPs
• 𝑝0 = 0, assuming there is at least one causal SNP for the fine-mapped 

region
• Assume the same probability for each configuration with 𝑘 causal 

SNPs (FINEMAP)

𝑝 𝛾 = 𝑝//
𝑚
𝑘 ,  ∑+1.2 𝛾+ = 𝑘 
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Likelihood function of indicator vector 𝛾 by 
integrating out 𝛽
• Posterior distribution of the indicator vector 𝛾	infers	the	posterior	
causal	probability	per	SNP	:	P(𝛾|𝑦, 𝑋)
• Likelihood function of indicator vector 𝛾 by integrating out 𝛽:

L 𝛾 = P 𝑦 𝛾, 𝑋 = ∫ 𝑃 𝑦	 𝛽, 𝑋)𝑃(𝛽 𝛾 𝑑𝛽	
= 𝑁 \𝛽 0, 𝜎( 𝑛𝑅 -. + 𝑠3

(𝜎(Δ4 	
= 𝑁 �̂� 0, 𝑅 + 𝑅Σ4𝑅 , Σ4 = 𝑛𝑠3

(Δ4
 Δ%: Diagonal matrix with 𝛾 on the diagonal

• The likelihood function 𝐿(𝛾) need to be evaluated per 𝛾
• Computational efficiency is needed because of all ∑/-.8 𝑚

𝑘  causal 
configurations

45�̂�	: single-SNP Z-score test statistic; 𝑅: SNP correlation (LD) matrix



Evaluate likelihood function 𝐿(𝛾) by FINEMAP 
• Partition �̂� into components for the Causal SNPs �̂�9  and Non-causal 

SNPs �̂�:
• Partition R, Σ4, and 𝑅Σ4𝑅 

• Use the properties of conditional multivariate normal distribution

Σ4= Σ99 0
0 0

𝑅 + 𝑅Σ%𝑅 =
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Evaluate likelihood function 𝐿(𝛾) by FINEMAP 
• Rewrite the marginal likelihood function 𝐿(𝛾) :

𝐿 𝛾 = 𝑃 �̂� 𝛾, 𝑅, Σ& = 𝑁 �̂� 0, 𝑅 + 𝑅Σ&𝑅 = 𝑃 �̂�' 𝛾, �̂�( , 𝑅, Σ& 𝑃 �̂�(|𝛾, 𝑅(( , Σ((
= 𝑁 �̂�( 0, 𝑅(( + 𝑅((Σ((𝑅(( 𝑁(�̂�'|𝐸 �̂�' �̂�( , 𝑉𝑎𝑟(�̂�'|�̂�())

NULL: 𝐿 𝛾 = 0 = 𝑃 �̂� 𝛾 = 0, 𝑅 = 𝑁 �̂�( 0, 𝑅(( 𝑁(�̂�'|𝐸 �̂�' �̂�( , 𝑉𝑎𝑟(�̂�'|�̂�())

• Bayes factor for assessing the evidence with a given 𝛾 against the null model using only causal SNPs 
(calculation only involves causal SNPs). 

Bayes factor (BF) is a likelihood ratio of the 
marginal likelihood of two competing 
hypotheses 
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Posterior for 𝛾 

• Unnormalized posterior probability
P 𝛾 𝑦, 𝑋 = 𝐵𝐹 𝛾:𝑁𝑈𝐿𝐿 ∗ 𝑝//

𝑚
𝑘

• Can be normalized over all ∑/-.8 𝑚
𝑘  causal configurations

• A Shotgun Stochastic Search (SSS) algorithm (Hans et al. 2007) was 
used by FINAMAP to rapidly evaluate many configurations and is 
designed to discover especially those with highest posterior 
probability 
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Shotgun 
Stochastic 
Search (SSS) 
algorithm
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Single-SNP Bayes factor

• Marginal posterior probability that the 𝑙th SNP is causal, i.e., single-
SNP inclusion probability:

• Single-SNP Bayes factor
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Fine-mapping accuracy
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Example
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55G. Wang et. al. JRSS B. 2020.



Single-Effect Regression (SER) Model

56G. Wang et. al. JRSS B. 2020.



Posterior under SER Model

57G. Wang et. al. JRSS B. 2020.
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Iterative Bayesian forward selection (IBSS) for SuSiE inference

SER: Single Effect Regression



IBSS algorithm illustration
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IBSS algorithm illustration
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IBSS algorithm illustration
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Example 
Results



Real-world example illustrated
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Fine-mapping using GWAS Summary Statistics
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Bayesian Functional GWAS

71



Account for Functional Annotation

• Prioritize functional SNPs
• Quantify enrichment of each 

type of functional SNPs with 
respect to GWAS 
associations
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Bayesian Functional GWAS
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J. Yang et. al. AJHG. 2017
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Apply BFGWAS to Study Age-related Macular 
Degeneration (AMD) 
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Enrichment Results
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Available Tools
• FINEMAP: Fine-mapping GWAS results: 

http://www.christianbenner.com 

• SuSIE: https://stephenslab.github.io/susieR/ 
• Extend for using summary data in a follow-up 2022 paper: 

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.10102
99 

• BFGWAS_QUANT: https://github.com/yanglab-
emory/BFGWAS_QUANT 
• Based on the BVSR model for Bayesian functional GWAS
• Account for multivariate quantitative annotations
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