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Outline

* Quality Control
* Genotype Quality Control
e Sample Relatedness: Kingship Coefficient

* Population Stratification
 Genomic Control Factor
* Genotype Principal Components Analysis
* Meta-analysis

* Linear Mixed Model (LMM)
* Heritability Estimation by REML



GWAS Quality Control

e Filter SNPs

— Marker genotyping missing rate (e.g., > 2%)

— Mapping quality for sequence data (based on mapping quality scores)

— Hardy-Weinberg Equilibrium (HWE) Testing (e.g., p-value < 107%)

- MAF (e.g., < 5%)

— Control sample reproducibility

— Mendelian Errors (e.g., > 1% families, or > 5 errors) for family-based studies

e Filter samples

— Sex inconsistencies and chromosomal anomalies

— Relatedness for population-based studies (how to quantify relatedness given
genotype data?)

— Ethnicity
— Sample genotyping efficiency/call rate (e.g., < 98%)



Genotype Quality

Data quality is one of the key factors affecting the validity of findings.

Example factors affecting genotype quality:

e Quality of DNA samples, depending on the sample source (e.g., blood, buccal
swab, spit Kit)

¢ Handling and storage of the sample (e.g., sample contamination)
e Genotyping platforms/chips
e Sequence errors

e Variant calling



Genotype Quality Control : Sex consistence

Mean Y chromosome intensity (44 probes)
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Visualization of X and Y probe intensities. The x-axis and y-axis
represent the sum of the average over all probes for the normalized
Cartesian intensity for allele A and the average over all probes for the
normalized Cartesian intensity for allele B using all probes available on
the X chromosome and Y chromosome, respectively. The XX (female,
red circles) and XY (male, blue triangles) subjects are shown on the
bottom right corner and on the top left corner, respectively. The plot
reveals two mislabeled individuals (one male with the female cluster,
and one female with the male cluster). Several XXY individuals are also
clearly visible (upper right corner).

S. Turner et. al. CP hum Genetics. 2011.
https://doi.org/10.1002/0471142905.hg0119s68
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Kinship QC

* Sample relationship checking
* Pedigree error checking



IBD vs. IBS

Let's ignore disease phenotypes and only consider the similarity of marker alleles.

Identical/ldentity by Descent (IBD): Two alleles are IBD if they are the same

physical copy.

- E.g., two siblings may inherit the same paternal allele from their father.
Identical/ldentity by State (IBS): Two alleles are IBS if they are the same type of

allele.

IBD — IBS
IBS - IBD
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Four alleles in parents = unambiguous IBD

Probability of Shared IBD

Type of Relative Pair T m m Expected IBD Sharing
Monozygotic twins 0 0 1 2
Full sibs 174 172 1/4 1
Parent-offspring 0 1 0 1
First cousins 3/4 1/4 0 1/4
Double first cousins 13/16 1/8 1/16 1/4
Grandparent-grandchild,

half-sibs, avuncular 12 12 0 12




Sample Relatedness (Z0 and Z1 here are Ty and 4 )
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Points in this plot show pairs of individuals plotted by their degree of
relatedness: the proportion of loci where the pair shares one allele IBD
(Z1) by the proportion of loci where the pair shares zero alleles IBD
(Z0). These values are obtained from PLINK using the —genome option.
Pairs are color-coded by the type of relationship determined by the
pedigree information embedded in the pedfile (also reported by
PLINK). This plot omits pairs of individuals having an overall kinship
coefficient = 0.05 for clarity. There is a pair of monozygotic twins
represented by a point in the lower left at (0,0), because they share two
alleles IBD at every locus across the genome.

S. Turner et. al. CP hum Genetics. 2011.
https://doi.org/10.1002/0471142905.hg0119s68
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Kinship Coefficient ¢

: The lorobablllty that
two alleles sampled at
random from two
individuals (one allele

Table 1. Relationship inference criteria based on estimating kinship
coefficients (¢) and probability of zero IBD sharing ()

per sam |e) are Relationship ¢ Inference criterna  mp  Inference criteria

ldentical by Descent

(|BD) Monozygotic twin % > 11”.? 0 <0.1

* Ty, 1) , 1. i i) 71-2, , Parenf—offspring % (E‘%’W) (? <0.1

denote the ioablllty Full sib i Gimogn) i (0.1,0.365)

that two in V|duals (i,j)  2nd Degree i (Gmpn) (1) 365 1—%)

share 0, 1, and 2 IBD. 3rd Degree L (G 3 (- — 4
Unrelated 0 < 2—91—_, 1 >1— 2—5'7_

_ 1
* 20 = —= gy,




Estimate Kinship Coefficient ¢ by PLINK

* Assume.HWE and homogeneous Pr(IBSj = 0)=Pr(AA, aa|IBD; =0)- Pr(IBDj =0) = 2p>(1 —p)*m0;; (1)
pOpu|atI0n This leads to the estimator

* Reference allele (denoted by A) R i e Y -
frequency p TSP 2 —pm?

* IBS;;,IBD; j denotes the IBS, IBD
between two |nd|V|dua|S (l, J) e Estimate nl;i,j' 7T2;i,j based on

* Method of Moments Nigs=1, Nips=2, Pm, To; ; j- (Purcell etal,

Pr(IBS;; = k) 2007. Tool: PLINK)

= z Pr(IBS;; = k|IBD;; = z) 7, -
z=0,1,2 * 20 =t Ty,



Estimate Kinship Coefficient ¢ by KING

* Assume HWE and homogeneous population
* p denotes the frequency of having a reference allele, p = %Zmﬁ,;

« X xU) denotes the Number of Reference Alleles for individuals i, with
m=1,2,.., M genotyped markers

E|(x® - xD)*| = 4p(1 — p)(1 - 26;;)
@ _ (M)
— 1 Zm (Xm Xm )
P = 3 T AS 2 (= )

M =2 —2Mg—4d;; M=4¢; +7;—1

Bioinformatics paper by A. Manichaikul et. al. 2010. Tool: KING.



Estimate Kinship Coefficient ¢ by KING

 Efficient computation matters
* Only SNPs present in both individuals will be used

4H

* When each ge_r)moty(p)e is stored in two bits, Bit Operations can be used to
l

computing Nja N, Naaaa Naa aa

. ﬁl\J = ). 20, (1 — p,,,) can be pre-calculated across all SNPs prior to the
pair-wise kinship coefficient estimation, and then updating to reflect the
set of observed genotypes used in analysis of each pair of individuals



Efficient computation matters

Table 2. Computation time of two software implementations to estimate
kinship coefficients in three sets of GWAS SNP data

Summary of genome scan data Computing time

Index No.ofSNPs No.ofsamples No.ofpairs KING PLINK

1 3079 857 269 36 046 2 min 2 h9 min
2 324748 602 180901 1 min 1h13 min
3 549 338 2454 3009832 25min 28 h 30 mir

The computation time refers to the time to estimate kinship coefficients for all
pairs of individuals, excluding overhead costs such as the time to load data into
the computer memory. The two KING implementations (the robust algorithm
and the algorithm assuming homogeneous samples) took a similar amount of
computational time. This computation time can be estimated reliably as the
analysis time for the entire data minus the analysis time for only the within-
family data. The unit of computation time is in minutes hours. All computation
was performed on and Intel Xeon with 3.20 GHz processor.



Fig. 1. Distribution of
kinship coefficient
estimation.

(A) Distribution of realized
IBD-sharing with 150k
SNPs (considering
sampling one allele per
individual);

(B) distribution of kinship
coefficient estimates with
150k SNPs;

(C) distribution of kinship
coefficient estimates with
5k SNPs;

(D) distribution of kinship
coefficient estimates with
500K SNPs.

Bioinformatics, Volume 26, Issue 22, 15
November 2010, Pages 2867—-2873,
https://doi.org/10.1093/bicinformatics/bt
a559

The content of this slide may be subject to copyright:
please see the slide notes for details.
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GWAS Quality Control : Kinship Coefficients 2¢

Count
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Histogram showing the distribution of pairwise kinship coefficients
(where kinship coefficient is greater than 0.05). The peak over 0.5
represents first degree relatives (parent-offspring, full siblings). The
peak over 0.25 represents second-degree relatives (half siblings,
avuncular, grandparent-grandchild). Third- and fourth-degree relatives
begin to blend into more distantly related samples between zero and
0.125.

S. Turner et. al. CP hum Genetics. 2011.
https://doi.org/10.1002/0471142905.hg0119s68
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Check GWAS Results by Quantile-Quantile (QQ) Plot

— Obtained — log 10(p-values) from GWAS
— Sort all —log 10(p-values) from most significant to least
— Pair these with the expected values of order statistics of a Uniform(0, 1)
distribution
— Under NULL hypothesis (no association), p-values follow a Uniform(0, 1)
distribution
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Source of Inflated GWAS Results

* Cohorts with samples of different ethnicities: e.g., European, Asian,
African ancestries

* The issue of Population Stratification



Population Stratification

Population stratification (or population structure) is the presence of a systematic
difference in allele frequencies between subpopulations, possibly due to different
ancestry.

Africa Europe Middle Central/ East Oceania America
East South Asia Asia

- NADS DD
s X X

el XXX XXY"

Allele frequencies at three microsatellite loci (Rosenberg N.A., Hum Biol. 2011).
Each of the three loci has exactly eight alleles. In most of the pie charts, one or

more alleles is rare or absent. .



Causes of population structure

Human migration:
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Inflated False Positives

* Population-based association study methods assume samples are of
the same ethnicity.

* The minor allele frequency of SNPs generally vary across different
populations

* When the case/control ratio differs across different populations,
instead of testing the association between the trait and genotype,
you might end up testing the association between the ethnicity and
genotype, leading to an inflated number of significant markers.



Example of False Positive Association

Consider genotypes (coded as 00, 01 and 11) at a marker locus

Subpopulation 1 Subpopulation 2
. (ﬁ\ﬁ 00 4
11 ] 1
T |
el . ] 5O
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N 11 01 1) m"
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1 " ™
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01
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Subpopulation 1 Subpopulation 2 Combined

1 O 1 O 1 0

Case |12 4 Case 1 8 Case |13 7

Control

14 2

Control|10 18

Control

24 20

A combined study tends to show association, even though there is no association

within each subpopulation.

22



How to Address Population Stratification?

Most Effective Approach
* Family-based Association Analysis

» Subject to the availability of data




How to Address Population Stratification?

Simplest Approach

* Adjust false positives by Genomic Control Factor (not always work)



Check GWAS Results by Quantile-Quantile (QQ) Plot

— Obtained — log 10(p-values) from GWAS
— Sort all —log 10(p-values) from most significant to least
— Pair these with the expected values of order statistics of a Uniform(0, 1)
distribution
— Under NULL hypothesis (no association), p-values follow a Uniform(0, 1)
distribution
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Genomic Control Factor

Genomic Control Factor is used to control for systematic inflation of type | error.

The idea is that the statistic T is inflated by an inflation factor A (i.e., genomic

control factor) so that
T ~ A

where A can be estimated by

A = median(Ty, Ts, . .., Ty)/0.456

e M is the number of independent tests, though in practice all tests are included.
e The denominator is the median of x7 distribution.

e 1 should be 1 under H,.



Adjust GWAS results by Genomic Control Factor Az

e Under null hypothesis (no association signal exists), p-values should
follow a uniform distribution within (0, 1)

* Median p-value = 0.5 under null hypothesis, corresponding to chi-
square statistic (df=1) value 0.456

* Find the actual median p-value from your GWAS, with corresponding
chi-square statistic (df=1) value median(T)

Genomic Control Factor: Ay = median(T)/0.456

e Adjust your GWAS results by A,

* Scale your chi-square statistic test statistics (df=1) by A;¢
* Recalculate the corresponding GWAS p-values
* Re-check QQ plot




Limitations of Genomic Control Factor

* Genomic control corrects for stratification by adjusting association
statistics at each marker by a uniform overall inflation factor.

 However, some markers differ in their allele frequencies across
ancestral populations more than others.

* Thus, the uniform adjustment applied by genomic control may be
insufficient at markers having unusually strong differentiation across
ancestral populations and may be superfluous at markers devoid of
such differentiation, leading to a loss in power



How to Address Population Stratification?

Commonly Used Approach :

* Account for variables representing ethnicity information (Principal
Components Analysis)



Principal Components Analysis (PCA)

* Consider genotype matrix X, with n individuals and p genome-wide SNPs

* Center and standardize columns in X, -> Z;, )
* PCA project original genotype data matrix to a new coordinate system such that
the PC1 explains the most data variance, and then PC2, ...
* Calculate a set of loading vectors (wy, length p, k=1, 2, ...) for PC1, PC2, ...
* Compute the nXn variance-covariance matrix for all samples as 2,,»,, =
ZZV /(n—1)
 Compute the eigenvalue decomposition of X, by R function eign()

* Select top K eigenvectors (w; ) whose corresponding eigenvalues are
significantly large (e.g., 5 or 10) by a scree plot

* Principle components (PCs) are given by: Zwy,



Principal Components Analysis (PCA)

* Principal Components Analysis (PCA) with respect to X, «,

* R function: prcomp() ;
https://www.rdocumentation.org/packages/stats/versions/3.5.1/topi
cs/prcomp

* PLINK

31


https://www.rdocumentation.org/packages/stats/versions/3.5.1/topics/prcomp

PCA Visualization
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Li et al. Science. 2008; Jakobsson et al. Nature. 2008.



Component 2 (0.08% variance)

First two principal components among European
subjects

French
Spanish
Slovak
Germman
Belgium
Czech

UK
Hungarnan
Polish

ORL0 % X +

D® o444 » b

T

Component 1 (0.21% variance)

Heath et al. 2008
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Adjust for Top PCs in Regression Model Based
Tests

e Adjust for the population structure in your study

* Generally, include PC1-5 as confounding covariates (C) in your

regression model

) Pr(r=1/X)\
log (Pr(YzOlX)) =PBot+al +fiX

Y =By +aC+ X +e€ e~N(0,0%)

* Examine GWAS results by QQ plot for inflated type | error



How to Address Population Stratification?

Most Robust Approach: Stratify Multi-Ethnic Cohorts

* Conduct association studies for samples of the same
population/ethnicity

* Combine association results by Meta-Analysis
e Subpopulation structure still exist




Meta-analysis

* Combine results across multiple studies for the same phenotype
* Improve power for the larger total sample size

* Address between study variances (due to population stratification, study
design)

* Avoid the hassle of sharing individual-level genotype/phenotype/covariate
data

* |t is theoretically shown that the meta-analysis results is equivalent to the
joint analysis with individual-level data under idea situation
 Same phenotype and covariates
* No population stratification
* Balanced case-control study



Improve Power with Larger Total Sample Size

Additive model, N cases, N controls, MAF = 3, a =5 x 1078

500 1000 2000 .. 4000 8000 16000 32000

N
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Michigan_Study

Example two individual
studies of AMD.
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Meta-analysis Methods

* Fisher’'s Method: combining p-values
e Stouffer’s Z-score Method
* I[nverse-variance method for fixed effect model



Fisher’s Method

e Consider the following summary statistics from K studies for testing
the association between the same SNP and the same (type)
phenotype

* p-values (p1, P2, ..., Px)
* Test statistic for meta-analysis
« X2 = -2Y% . log(p;) ~ Chi-square distribution with df=2K under H,

* Why meta test statistic X? follows a Chi-square distribution under the
NULL hypothesis when there is no association?



Stouffer’s Z-score Method

* Consider a series of summary statistics from K studies for testing the
association between the same SNP and the same (type) phenotype

* p-values (p1, P2, -, Px)

o Effect-sizes (81, B, ..., Bx)
* Sample sizes (n{,n,, ..., Ng)

* Invert each p-value to a Z-score statistic:

* Ly = q)_l( - %) * sign(By)

* @ is the standard normal cumulative density function
* Test statisticéweight by sample sizes) for meta-analysis
* Zmeta = =1 ZkWie N(0, 1) under H,

K 2
k=1 Wik

* Wi = /Ny




Inverse-variance method for fixed effect model

e Consider the following summary statistics from K studies for testing
the association between the same SNP and the same (type)
phenotype

o Effect-sizes (81, B, ..., Bx)
* Variance of effect-sizes (v, Vo, ..., Vg)

* Test statistic (Inverse-variance weighting) for meta-analysis

Yh=1 Wi Bk
. = , w, =1/v
ﬁmeta Zk Wi 1 k / k
¢ Var(ﬁmeta) = Zk Wi

° .Bmeta ~
Wald Test Statistic: T G N(0,1) under H,



Table 3 | Summary of methods for meta-analysis of genome-wide data

Method Description Advantages Disadvantages Main software used
Pvalue Simplest meta-analytical Allows meta-analysis when Direction of effect is not always METAL, GWAMA,
meta-analysis  approach effects are not available available; inability to provide effect R packages
sizes; difficulties in interpretation
Fixed effects Synthesis of effect sizes. Effects readily available Results may be biased if a large METAL, GWAMA,
Between-study variance is through specialized software  amount of heterogeneity exists R packages
assumed to be zero
Random Synthesis of effect sizes. Generalizability of results Power deserts in discovery efforts; GWAMA, R packages
effects Assumes that the individual may yield spuriously large summary
studies estimate different effects effect estimates when there are
selection biases
Bayesian Incorporates prior assessment Most direct method for Methodologically challenging; R packages
approach of the genetic effects interpretation of results as GWAGS-tailored routine software

Multivariate

approaches correlation between outcomes or
genetic variants

Other A set of different approaches

extensions that allows for the identification

of multiple variants across

different diseases

Incorporates the possible

posterior probabilities given
the observed data

Increased power can identify
variants that conventional
meta-analysis do not reveal
using the same data sets

Summary results of previous
meta-analyses can be used

GCTA, genome-wide complex trait analysis; GWAS, genome-wide association study.

not available; subjective prior
information used

Computationally intensive; software
not available for all analyses; some
may require individual-level data

May need additional exploratory
analyses for the identification of

variants; prone to systematic biases

GCTA for multi-locus

approaches

Software developed
by the authors

of the proposed
methodologies

Evangelou, E. and loannidis, J. P.A.
Nature Reviews
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Table 1 | Examples of high-profile consortia for various disease phenotypes

Consortium
(acronym)

AMD

BCAC
CHARGE
GEFOS
GIANT

GLGC

IIBDGC
IMSGC
ISC
MAGIC
NARAC-III
TREATOA
WTCCC

Phenotype (or
phenotypes)

Age-related macular
degeneration

Breast cancer
Heart disease and ageing
Osteoporosis

Anthropometric traits

TC HDL-C, 1 DI -C,
triglycerides

Inflammatory bowel disease
Multiple sclerosis
Schizophrenia

Glycaemic traits
Rheumatoid arthritis
Osteoarthritis

Various phenotypes

Publicly available genome-wide
data?

Yes, accessible through the website

No
No
Yes, accessible through the website

Yes, accessible through the website
Yes, accessible through the website

Yes, accessible through the website
Yes, accessible through the website
No
Yes, accessible through the website
No
Yes, accessible through the website

Yes, accessible through the website

Website

ublic

http://www.sph.umich.edu/csg/abecasis

amdgene2012

http://web.chargeconsortium.com

http://www.gefos.org

http://www.broadinstitute.org/collaboration/giant/index.
php/GIANT consortium

http://www.sph.umich.edu/csg/abecasis/public/lipids2010

http://www.ibdgenetics.org

https://www.imsgenetics.org/

http://pngu.mgh.harvard.edu/isc

http://www.magicinvestigators.org

http://www.naracstudy.org/NaracStudy/narac.aspx

http://treatoa.eu

http://www.wtccec.org.uk

HDL-C: high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol.

Evangelou, E. and loannidis, J. P.A.
Nature Reviews
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Available Tools

* PLINK : QC, PCA of genotype data, GWAS
https://www.cog-genomics.org/plink/

* METAL : Meta-analysis tool
https://genome.sph.umich.edu/wiki/METAL Documentation

* KING : Relationship inference
https://www.kingrelatedness.com/manual.shtml
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Topics for Next Lecture

* Linear Mixed Model (LMM)
* Heritability Estimation by REML

* Fine-map GWAS Results
e Conditional analysis
* Bayesian method

* Multivariate GWAS
e LASSO
* Bayesian Variable Selection Regression
e GCTA joint analysis using GWAS summary statistics



