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Outline

* Genotype Calling and Imputation

* Single Variant Test (common variants with MAF > 1%)

* Dichotomous Trait
e Chi-square test with contingency tables
* Logistic regression model based test

* Quantitative Trait
* General linear regression model based test

* Visualization by Manhattan plot and LocusZoom plot



DNA Microarrays
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* Old generation of technology

(Affymetrix or lllumina)
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* Still widely used for cheap

cost, 5200 / sample
 Can be customized with
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Variant Calling for Microarray Genotyping

* Each SNP has three possible genotypes: AA, BB, AB with two alleles A and B

 Summarize the probe intensities for each allele and SNP, and then make a call based on the
summarized intensities

SNP on the X chromosome
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Normalised and summarised allele intensities from the Illumina BeadChip array. e+
The intensities are shown in transformed polar coordinates: the theta-coordinate : : ‘ o ‘
. . 5.5 6.0 6.5 7.0 7.5
represents the angle from the x-axis (the angle from the x-axis to the vector [A, B] of

i . X signal A
the two allele intensities), and the R-coordinate represents the copy number (the length

of the vector). (A) Intensities for a single nucleotide polymorphism (SNP) from 120
arrays, clearly separating the intensities into three groups (A/A, A/B, B/B). (B) Data

Normalised and summarised allele intensities from the Affymetrix GeneChip
array. Each SNP is represented by a pair of intensity values (A, B) for the A and B

from 317,000 SNPs (from the same 120 arrays). This plot clearly indicates that signal alleles, respectively (here, on a log-scale). An X chromosome SNP is shown,
strength varies considerably with the SNP, a factor that must be taken into account clearly indicating separation into distinct genotype clusters. The plot also shows
when genotyping individual SNPs and deriving copy numbers. The figure is that different copy numbers can be distinguished. Males are haploid for the

particular SNP (ie either AY or BY) and show up as homozygous but with reduced

reproduced with the permission of Gunderson et al. [15] allele intensity. Grey: BY; blue: BB; green: AB; red: AA; and pink: AY.

Lamy P. et. al. Human Genomics, 2011.



Whole Genome Sequencing (WGS

° N eXt' ge ne rat | on The Whole Genome Sequencing (WGS) Process

WGS is a laboratory procedure that determines the order of bases in the genome of an
organism in one process. WGS provides a very precise DMA fingerprint that can help

L]
S e q U e n C I n g link cases to one another allowing an outbreak to be detected and solved sooner.
tec h n O I Ogy Bacterial Culture

* Introduction video of
lllumina Sequencing
technology:

4. DNA Library Sequencing

o The DNA library is loaded onto a
sequencer. The combination of
nucleotides (A, T, C, and G} making
up each individual fragmeant of DNA
is determined, and each result is
called a “DNA read.”

5. DNA Sequence Analysis

(1] Scientists take bacterial £
cells from an agar plate -1 y
° and treat tham with Il @) Scientists make many
p S o WWW.VO u u chemicals that break them g frzl;';sc;f e:;:g Z’;’:\MESS
opan, releasing the DNA. : T : CCTREO6EECTORAN ToseETeG
The DA is then purified. %‘ called polymerase chain CTTATTCTTOMCTT i
? — & reaction (PCR). The poo! of GEGOCCTCCANTERT DNA
e . CO I I I Wa C H V— = fragments generated in a CTIGAAATCRCCSN j"“aﬂs
S PCR machine is called a GOCTOLANTGETTAT
3 “DNA library.”™ 3
B 5 I I R a 28 . CCTOGCGCOCTOCARTGCTTATICTTGRCCTTGAAKTCO00GMA
Reconstructed Genome
G, - *
I
* Cost ~¥$2000/sample e —
S 3 S {r_ =y

@ Dnais cutinto short fragments \'@

v 5 The sequencer produces millions of DNA reads and specialized
of known length, either by using 6 o ot e - el

computer programs are used 10 put them together in the
. p & yrarms _
e:}::me;s nmo:Edciu.ar ﬁ‘:':sws correct order like pleces of a jigsaw puzzle, When completed,
| BEINAcRI Rk RO the genome seguence containing milions of nueleotides (in

* Profile >10M SNPs

one or a few large pieces) is ready for further analysis.


https://www.youtube.com/watch?v=fCd6B5HRaZ8

WGS Analysis Workflow

bcl2fastq2 (5 hour)

Run folder (BCLs) Fastq
/// Isaac Aligner (5 hour)
[
BAM (sorted & mark-dup)
Isaac variant caller
(IVC)
(0.7 hour)

CNVSeg
(0.7 hour)

Variants
(SNP/INDEL)

SnpEff (1.1 hour)

Annotated variants (VCF)

Manta (0.2 hour)

SV (VCF)

Split by chromosome file (EXCEL)

Total analysis time including statistics calculation (2 hour) — approximately 10 hour




Variant Calling for Sequence Genotyping

I AT Ingredients That Go Into Prior
ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC . Miostsesain iy
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC — P(non-reference base) ~ 0.001
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT
CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads . \/l/l'::oiiféi:;sh\zg\:;gglztlglr,\l‘a(ﬂgoqe:i;gzvgous
5’-ACTGGTCGATGCTAGCTGATAGCTAG CTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ = P(non-reference homozygote) ~ 0.001 * 1/3

Reference Genome )
* Mutation model

— Transitions account for most variants (C<&>T or A&>G)

" — Transversions account for minority of variants
P(reads|Genotype)Prior(Genotype) !

P -——
(Genotype|reads) Y.; P(reads|G)Prior(G)

Combine these likelihoods with a prior incorporating information from other
individuals and flanking sites to assign a genotype.



Variant Calling for Sequence Genotyping

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT:

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

* Assume the probability to sequence “C” given “A”, or
sequence “A” given “C” is 0.001:

P(reads | AA) = dbinom(3, size =5, prob = 0.001) = 9.98e-9

P(reads | AC) = dbinom(3, size =5, prob =0.5) =0.312

P(reads | CC) = dbinom(2, size =5, prob = 0.001) =9.97e-6

e Assume population based prior with P(A) = 0.2
Prior(AA) = 0.04; Prior(AC) = 0.32; Prior (CC) = 0.64
Posterior(AA) < 0.001
Posterior(AC) = 0.999
Posterior(CC) < 0.001

Individual Based Prior

— Assumes all sites have an equal probability of showing polymorphism
Specifically, assumption is that about 1/1000 bases differ from reference
— If reads where error free and sampling Poisson ...
— ... 14x coverage would allow for 99.8% genotype accuracy
— ... 30x coverage of the genome needed to allow for errors and clustering

Population Based Prior
— Uses frequency information obtained from examining other individuals

— Calling very rare polymorphisms still requires 20-30x coverage of the genome
— Calling common polymorphisms requires much less data

Haplotype Based Prior or Imputation Based Analysis
— Compares individuals with similar flanking haplotypes
— Calling very rare polymorphisms still requires 20-30x coverage of the genome
— Can make accurate genotype calls with 2-4x coverage of the genome
— Accuracy improves as more individuals are sequenced



Genotype data format

* Single nucleotide po
alternative allele, e.g., AG, AA, GG

ymorphism (SNP) : One reference allele and one

 Variant Call Format (VCF): Text file recording one SNP per row

##fileformat=VCFv4.3

##fileDate=20090805

##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36. fasta

##contig=<ID=20, length=62435964,assembly=B36,md5=f126cdf8abe@c7f379d618ff66beb2da, species="Homo sapiens", taxonomy=x>

##phasing=partial

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A, Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2 ,Number=0, Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q1@,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1, Type=String,Description="Genotype'>
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1, Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">

#CHROM POS ID REF  ALT QUAL FILTER INFO FORMAT NAGROO1
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ ©]0:48:1:51,51
20 17330 . il A 3 qle NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ ©@]@:49:3:58,50
20 1110696 rs6040355 A G, T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1]2:21:6:23,27
20 1230237 . i . 47 PASS NS=3;DP=13; AA=T GT:GQ:DP:HQ ©|0:54:7:56,60
20 1234567 microsatl GTC G,GTCT 5@ PASS NS=3;DP=9; AA=G GT:GQ:DP 0/1:35:4

NAQ00O2
1|0:48:8:51,51
0]|1:3:5:65,3
2|1:2:0:18,2
0|0:48:4:51,51
0/2:17:2

NAGRBO3
1/1:43:5:, ;5
0/0:41:3
2/2:35:4
0/0:61:2
1/1:40:3



Human genetic variants and sample sizes over

past 20 years

m No. of Samples No. of Markers Publication

Ongoing
2016
2015
2012
2010
2010
2008
2007
2005
2003
2002
2001
2000

120,000
32,488
2,500
1,092
179
100,184
8,816
270

270

80

218

800
820

600 million
40 million
80 million
40 million
16 million
2.5 million
2.5 million
3.1 million
1 million
10,000
1,500

127

26

NHLBI Precision Medicine Cohorts / TopMed
Haplotype Reference Consortium (Nature Genetics)
The 1000 Genomes Project (Nature)

The 1000 Genomes Project (Nature)

The 1000 Genomes Project (Nature)

Lipid GWAS (Nature)

Lipid GWAS (Nature Genetics)

HapMap (Nature)

HapMap (Nature)

Chr. 19 Variation Map (Nature Genetics)

Chr. 22 Variation Map (Nature)

Three Region Variation Map (Am J Hum Genet)
T-cell receptor variation (Hum Mol Genet)

10



HapMap Project (2002 - 2010)

* Goal: Develop a haplotype map of the human genome.

 The HapMap is valuable by reducing the number of SNPs required to
examine the entire genome for association with a phenotype from the 10

million SNPs that exist to roughly 500,000 tag SNPs.

* Phase Il HapMap characterizes >3.1M SNPs (~1.3M from Phase |)
genotyped in 270 individuals from 4 populations, including 25-35%
common SNPs (¥*10M), one per kilobase.

30 trios of Yoruba (YRI) in Ibadan, Nigeria : African
* 30 trios of Centre d’Etude du Polymorphisme Humain (CEPH) collection (CEU) living

in Utah : European
* 45 unrelated Han Chinese individuals in Beijing (CHB) + 45 unrelated Japanese in

Tokyo (JPT) : Asian

The International HapMap Consortium. Nature 449, 851-861 (2007).



Figure 1: SNP density in the Phase Il HapMap.

a b -— — - p— P —
X >2.5 ret e e T g,
; s
20 1:25_'1_5 v L v v v L v
19 1.0-1.25
. 0.75-1.0
o 16 g?ﬁg;s dhicadaesl - Y
3 i <i:|1 )
3 1 : 10,000 10,020 10,040 10,060 10,080 10,100
% 2 Position NCBI build 35 (kb)
& ¢ ° 3
8 6
7 =] — w
2 83 44f ' = 238
: g8 | e
3 i_,_.w. 20 5 3
@ : 1 >
’ %sﬂ-gm;; e W 1S 22
1 T | T T 208  § 728
0 50 100 150 200 250 4 . e 4 Z
» @  -100-80-60-40-20 0 20 40 60 80 100 £
Position (Mb) =

Position (kb)
a, SNP density across the genome. Colours indicate the number of polymorphic
SNPs per kb in the consensus data set. Gaps in the assembly are shown as white. b,
Example of the fine-scale structure of SNP density for a100-kb region on

chromosome 17 showing Perlegen amplicons (black bars), polymorphic Phase |
SNPs in the consensus data set (red triangles) and polymorphic Phase Il SNPs in the

consensus data set (blue triangles). Note the relatively even spacing of Phase | SNPs.

¢, The distribution of polymorphic SNPs in the consensus Phase Il HapMap data
(blue line and left-hand axis) around coding regions. Also shown is the density of
SNPs in dbSNP release 125 around genes (red line and right-hand axis). Values were
calculated separately 5’ from the coding start site (the left dotted line) and 3’ from
the coding end site (right dotted line) and were joined at the median midpoint
position of the coding unit (central dotted line).

The International
HapMap Consortium.
Nature 449, 851-861
(2007).
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1000 Genome Project
(2008 - 2015)

Goal: Find most genetic variants with MAF >
1% in populations across the world.

First project to sequence (~8X coverage)
the genomes of a large number of people
(n =2504)

Largest public catalogue of human variation
and genotype data:
http://www.internationalgenome.org/

26 different populations under 5 super
populations:

AFR, African

AMR, Ad Mixed American
EAS, East Asian

EUR, European

SAS, South Asian

The 1000 Genomes Project
Consortium. Nature 526, 68-74
(2015).
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a, Polymorphic variants within sampled populations. The area of each pie is proportional to the
number of polymorphisms within a population. Pies are divided into four slices, representing
variants private to a population (darker colour unique to population), private to a continental
area (lighter colour shared across continental group), shared across continental areas (light
grey), and shared across all continents (dark grey). Dashed lines indicate populations sampled
outside of their ancestral continental region. b, The number of variant sites per genome. ¢, The
average number of singletons per genome. 13


http://www.internationalgenome.org/

Table 1. Median autosomal variant sites per genome in 1000 genome project

AFR AMR EAS EUR SAS
Samples 661 347 504 503 489
Mean coverage 8.2 7.6 7.7 7.4 8.0

Var. sites Singletons Var. sites Singletons Var. sites Singletons Var. sites Singletons Var. sites Singletons

SNPs 4.31M 14.5k 3.64M 12.0k 3.55M 14.8k 3.53M 1.4k 3.60M 14.4k
Indels 625k - 557k - 546k - 546k - 556k -
Large deletions 1.1k 5 949 5 940 7 939 5 947 5
CNVs 170 1 153 1 158 1 157 1 165 1
MEI (Alu) 1.03k 0 845 0 899 1 919 0 889 0
MEI (L1) 138 0 18 0 130 0 123 0 123 0
MEI (SVA) 52 0 44 0 56 0 53 0 44 0
MEI (MT) 5 0 5 0 4 0 0 4 0
Inversions 12 0 9 0 10 0 9 0 1 0
Nonsynon 12.2k 139 10.4k 121 10.2k 144 10.2k 116 10.3k 144
Synon 13.8k 78 11.4k 67 1.2k 79 1.2k 59 11.4k 78
Intron 2.06M 7.33k 1.72M 6.12k 1.68M 7.39k 1.68M 5.68k 1.72M 7.20k
UTR 37.2k 168 30.8k 136 30.0k 169 30.0k 129 30.7k 168
Promoter 102k 430 84.3k 332 81.6k 425 82.2k 336 84.0k 430
Insulator 70.9k 248 59.0k 199 57.7k 262 57.7k 189 59.1k 243
Enhancer 354k 1.32k 295k 1.05k 289k 1.34k 288k 1.02k 295k 1.31k .
TFBSs 927 4 759 3 748 4 749 3 765 3 The 1000 Genomes PrOJeCt
Filtered LoF 182 4 152 3 153 4 149 3 151 3 Consortium. Nature 526, 68-74
HGMD-DM 20 0 18 0 16 1 18 2 16 0 (2015)
GWAS 2.00k 0 2.07k 0 1.99k 0 2.08k 0 2.06k 0
ClinVar 28 0 30 1 24 0 29 1 27 1

See Supplementary Table 1 for continental population groupings. CNVs, copy-number variants; HGMD-DM, Human Gene

Mutation Database disease mutations; k, thousand; LoF, loss-of-function; M, million; MEI, mobile element insertions. 14



Impute Microarray Genotype Data

* Using WGS reference panel, e.g., 1000 Genome
* Fill in SNP genotypes for those note genotyped by Microarray

* Genotype imputation has become a standard tool in GWAS

* Can only impute variants observed in a reference panel. Reference panels
with millions of deeply sequenced individuals are available.

Result in “10M imputed common variants
Improve GWAS power

Facilitating fine-mapping and meta-analysis
Facilitating GWAS results interpretation



Genotype Imputation Intuition

* Any two individuals, even if unrelated, can share short stretches of
chromosome derived from a distant common ancestor.

e Observed genotypes from Microarray can be used to identify DNA
segments shared between the study sample and a reference panel of
sequenced genomes.

* A study haplotype can be represented as a mosaic of short segments of
related haplotypes found in the reference panel.

* Points where the reference haplotype template changes represent
historical recombination events.

* Points where the observed target allele differs from the template allele
represent historical mutation events, gene conversion events, genotype
error, or erroneously assigned matches.



Observed Genotypes
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Phase Chromosome,

Genotypes
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Li and Stephens Mode

* Hidden Markov Model (HMM)

e Observed genotypes of unknown
phase in a study sample represent
the observed data of the HMM.

* Underlying and unobserved set of
phased genotypes represent the
hidden states of the HMM.

* Probability of a template switch
between markers is determined by Misings 6. | T » ¢ « s v s B s #» T o 5 B s s @
the HMM transition probabilities,
related to population
recombination rate.

Reference haplotypes
N

Imputed: S| T ga a Gc tgActaTcghAgc CTtc

Figure 2

* Probability that an observed allele

An illustration of genotype imputation, showing the process of imputation for a study haplotype (S¢)

1 H genotyped at 6 markers using a reference panel of sequenced haplotypes at 21 markers. The alleles in S¢; are
d Iffe IS fro m t h S te m p I ate IS used to match short segments from the reference panel. For example, in the first genomic segment, the
1 lccl alleles T and G imply that the corresponding segment might have been copied from haplotype Xj. In the
d ete rmin ed by th € H M M €EMISSIoN second segment, the alleles A and T imply that haplotype X5 might have been copied. Proceeding similarly,
p r-o ba bi I ities the study haplotype can be represented as a mosaic of DNA segments from haplotypes X3, X5, and Xj.

Consequently, the missing sites can be imputed to obtain the final imputed haplotype, Si.



Markov Model

ﬁP(XI S) ﬁpm 5.) ﬁP(Xs S,) P(X, | 5)
S S

1 2 5; S
J] @ = Q= Q=

P(S)) P(S,|S)) P(S,|S,) P(...)

The final ingredient connects template states along the chromosome ...



Possible States

e A state S selects pair of template haplotypes
— Consider §; as vector with two elements (S, 4, S, ,)

e With H possible haplotypes, H? possible states
— H(H+1)/2 of these are distinct

A recombination rate parameter describes probability
of switches between states

— P((Si,l =Q,5, = b) > (Si+1,1 =3,5,1, = b)) (1-6)?
— P((S;;=2a,S;,=b) > (S;;1,=2a%,5,,1,=D)) (1-6)6/H
— P((S;;=2a,5;,=b) > (S;;1,=a%,5,,,,=b%)) (6/H)?

22



Emission Probabilities
Each value of S implies expected pair of alleles

Emission probabilities will be higher when
observed genotype matches expected alleles

Emission probabilities will be lower when alleles
mismatch

Let T(S) be a function that provides expected
allele pairs for each state S

23



Emission Probabilities

(1 —8}')2+8}2, I'(5)=Gjand Gj is |

2(1 —8}')8},',

(1—¢)".
P(G;|5;) = (1—¢)s,

2

&5

}5

T(S})# G}' and G}' 1S |

neterozygote,
neterozygote,

T(S}')Z G}' and G}' 1S |

NoOmMozygote,

T(5;) is heterozygote and

G; homozygote,

I'(5;) and G; are opposite

homozygotes.
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HMM

* The probability of each possible unobserved path through the HMM
hidden states (reference haplotypes) can be calculated.

* Penalized when path switches reference haplotypes via HMM transition
probability

* Penalized when reference allele on the path differs from the observed allele
via HMM emission probabilities

* Probability that the unobserved path goes through a particular HMM
state (state probability per reference haplotype) can be calculated by
HMM forward-backward algorithm

* The probability (Z) that the target haplotype (study sample) carries a
particular allele is the sum of the state probabilities corresponding to
reference haplotypes that carry the allele

e Zis also the expected number of a particular allele




Phasing

* Pre-phasing genotype data of the study sample greatly reduce
computation burden of genotype imputation
* First pre-phasing (haplotype estimation) of the genotypes of study samples
* Imputation into the estimated study haplotypes

* Reduce the complexity of the imputation step from quadratic to
linear in the number of reference haplotypes

* Allowing matches to be found by comparing against phased sample
haplotypes rather than against all pairs of sample haplotypes

* Reduce cost for exploring multiple reference panels
* Benefits from advanced phasing methods



Techniques for Computation Efficiency

e Storing reference data in memory
e Burrows-Wheeler Transform

 M3VCF format :exploits local redundancy among haplotypes by only storing
unique allele sequences along with a map

* Reduce >90% computation time compared with using VCF format with >100K reference
samples

* Allowing reference haplotypes to be locally clustered
* Binary reference format (bref) : Because of the bulk of alleles with low
nonmajor allele frequency in reference panel, only store a list of reference
haplotypes that carry the minor allele (one list per allele)
* Searching the lists of haplotypes to find the allele on a given haplotype
* If haplotype is not found in any list, the haplotype carries the major allele
* Reduces >30% computation time with >100K reference samples



Techniques for Computation Efficiency

* Clustering identical reference haplotype segments
* Conduct local clustering ahead for the reference panel

* Same allele sequence can be carried by many reference haplotypes in short
regions

* Reduce state space for non-boundary regions

* Imputation via linear interpolation

« HMM state probabilities are calculated for genotyped markers of the study
sample

« HMM state probabilities at imputed markers are estimated by linear
interpolation on genetic distance

* One can cluster reference haplotypes that have identical allele
sequences between two genotyped markers before linear
interpolation
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Figure 1 Overview of state space reduction. We consider a chromosome region with M = 9 markers and H = 8 haplotypes: X;, X5, ..., Xg. We break the
region into consecutive genomic segments (blocks) and start by analyzing block B from marker 1 to marker 6. In block B, we identify U = 3 unique
haplotypes: Y1, Y2, and Y3 (colored in green, red, and blue, respectively). Given we know the left probabilities of the original state space at marker 1
(that is, L1(Xy), ..., L1(Xg)), we fold them to get the left probabilities of the reduced state space at marker 1: £1(Y;), £1(Y»), and £1(Y3). We implement
HMM on the reduced state space (Y7, Y», and Y3) from marker 1 to marker 6 to get Lg(Y1), Lg(Y2), and Lg(Y3). We next unfold the left probabilities of
the reduced state space at marker 6 to obtain the left probabilities of the original state space: Lg(X}), ..., Lg(Xg). We repeat this procedure on the next
block, starting with Lg(X1), ..., Le(Xg), to finally obtain Lg(X1), ..., Lo(Xg).
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Table 1 Genotype imputation tools that employ a hidden Markov model (HMM)

Description of state space Computational complexity HMM parameter functions

FastPHASE 2006 All genotype configurations from a fixed number of ~ Maximization-step linear in number of Depends on recombination and mutation rates; parameters are fit using
localized haplotype clusters haplotypes, quadratic in number of an expectation-maximization algorithm
clusters
IMPUTE 2007 All genotype configurations from all reference Quadratic in number of haplotypes Depends on a fine-scale recombination map that is fixed and provided
haplotypes internally by the program
Beagle 2007 All genotype configurations from a variable number Quadratic in number of haplotypes Empirical model with no explicit parameter functions
of localized haplotype clusters
IMPUTE2 2009 All reference haplotypes Phasing quadratic in number of Same as IMPUTE
haplotypes, imputation linear in number of
haplotypes
MaCH 2010 All genotype configurations from all reference Quadratic in number of haplotypes Depends on recombination rate, mutation rate, and genotyping error;
haplotypes parameters are fit using a Markov chain Monte Carlo or expectation-
maximization algorithm
Minimac and 2012 All reference haplotypes Linear in number of haplotypes Same as MaCH
Minimac2
Minimac3 2016 All unique allele sequences observed in reference Linear in number of haplotypes Same as MaCH, but parameter estimates are precalculated and fixed
data in a small genomic segment
Beagle 4.1 2016 All reference haplotypes at genotyped markers Linear in number of haplotypes Depends on recombination rates and error rates, which are
precalculated and fixed
Minimac4 2017 Collapsed allele sequences from reference data Linear in number of haplotypes Same as Minimac3
that match at genotyped positions in small
genomic segments
IMPUTE4® 2017 All possible reference haplotypes Linear in number of haplotypes Same as IMPUTE2
Beagle 5.0 2018 Auser-specified number of reference haplotypes Linear in number of haplotypes Same as Beagle 4.1

This table describes the typical state space and parameter functions used to model the Li and Stephens framework. Minimac and IMPUTE2 were the first tools to use the prephasing approach. Minimac3
and Beagle 4.1 exploit local haplotype redundancy to reduce the size of the state space and hence the computational burden.

AIMPUTE4 uses the same HMM as IMPUTE2; however, to reduce memory usage and increase speed, it uses compact binary data structures and takes advantage of high correlations between inferred
copying states in the HMM to reduce computation.
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Measuring Imputation Accuracy

* Imputation methods estimate a probability distribution for the allele
carried by each haplotype per imputed marker

* Posterior genotype probabilities can be derived under HWE

* Expected allele dose (dosage) of the imputed genotype is given by the
sum of the posterior allele probabilities for each haplotype — used
for follow-up GWAS

* Imputation r? : squared correlation between the true and estimated
dose of an allele across all imputed samples

* Can be estimated from posterior allele probabilities without knowing the true
allele

* Threshold 0.3 is commonly used



ESTIMATING 72

One attractive feature of 7, the squared correlation between true and imputed allele dose, is that it can be estimated
from posterior allele probabilities without knowing the true allele on each chromosome. Here, we derive an estimate
of 7 in terms of the posterior allele probabilities.

Let X be 1 if a chromosome carries the allele of interest and be 0 otherwise, and let Z be the estimated posterior
allele probability that X= 1. Then 7 is defined to be the squared correlation of X and Z. We say that the posterior
allele probabilities are correctly calibrated if E[X | Z] = Z. If the posterior allele probabilities are correctly calibrated,
we can use the law of total expectation and the fact that X* =X to obtain

E[X*] = E[X] = E[E[X|Z]] = E[Z]
Var(X) = E[X?] - E[X]
= E[Z) - E[2}

and

Cov(X, 7) = E[XZ] - E[X]E[Z]
= E[E[XZ|Z]) - E[E[X |Z]) E[Z]
= E[Z’] - E[Z]E[Z]
= Var(Z).

Consequently,

. _ (CovX, 2y

Var(X)Var(Z)

Var(Z)

Var(X)

_ E[Z)-E[Z}'

E[Z) - E(2)
If there are » imputed chromosomes and z; is the estimated reference allele probability in the /th haplotype, one
can estimate E[Z*] as E[Z¥] ~ (1/n) }_ 2f and 7? as

R "EZ;'Z = (Zz:‘)z_
nY z— (X z) 32




Table 2 The most commonly used public reference panels to date

Reference panel Number of reference Number of sites (autosomes + X Average sequencing Ancestry distribution Publicly Indels Reference
samples chromosome) coverage available available

International HapMap Project 1,011 1.4 million NA2 Multiethnic Yes No 47

phase 3

1000G phase 1 1,092 28.9 million 2-6x Multiethnic Yes Yes 1

1000G phase 3 2,504 81.7 million Tx genomes, 65x Multiethnic Yes Yes 3
exomes

UK10K Project 3,781 42.0 million 7x genomes, 80 x European Yes Yes 89
exomes

HRC 32,470 40.4 million 4-gxb Predominantly Partiallyd No 69

European®
TOPMed 60,039 239.7 million 30x% Multiethnic Partially® Yes 71

Abbreviations: 1000G, 1000 Genomes Project; HRC, Haplotype Reference Consortium; indel, insertion or deletion; NA, not applicable; TOPMed, Trans-Omics for Precision Medicine.

aThe International HapMap Project phase 3 data were genotyped on the Illumina Human1M and Affymetrix 6.0 SNP arrays.

brhe HRC panel was obtained by combining sequencing data across many low-coverage (4-8x) and a few high-coverage sequencing studies.

“The only non-European samples in the HRC panel are through the 1000G reference panel (which was a contributing study).

dMost of the HRC samples (~27,000) are available for download through controlled access from the European Genome-Phenome Archive.

€Some of the TOPMed samples (~18,000) are available for download through controlled access from the Database of Genotypes and Phenotypes (dbGaP).
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Imputation r? Imputation r2

Imputation r?
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Figure 5 Imputation accuracy for five ancestries: (a)

European, (b) admixed American, (c) East Asian, (d) Southeast
Asian, and (e) African. We extracted 10 samples from each of
these ancestries from the 1000 Genomes Project (1000G) phase 3
data, masked all variants except those on the Illumina 1M chip,
and imputed them using the Trans-Omics for Precision Medicine
(TOPMed) (with 18,000 samples), Haplotype Reference
Consortium (HRC), and 1000G phase 3 (after removing overlaps)
reference panels. The aggregate r~ (measuring the imputation
accuracy) is plotted as a function of the alternate allele
frequency.
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Impute Microarray Genotype Data

* Using WGS reference panel, e.g., 1000 Genome

* Fill in SNP genotypes for those not genotyped by Microarray

* Check imputation r? : accept imputed genotypes with r2 > e.g., 0.3
e Result in “10M common variants

* Imputed genotype data
* Dosage format — expected number of minor alleles with domain [0, 2]
* Genotype format — number of minor alleles with values O, 1, or 2
* Genotype with the highest estimated probability will be reported



2002 [E International HapMap Project inception Int. HapMap Consort. 2003
Human Genome Project completion Int. Hum. Genome 5eq. Consort. 2004
2003 . _ — ;
First genome-wide association study Klein et al. 2005
Rm::“ International HapMap Project phase 1 Int. HapMap Consort. 2005
Software | FastPHASE Scheet & Stephens 2006
2005 First genome-wide association studies Scott et al. 2007,
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IMPUTE Marchini et al. 2007
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Beagle Browning & Browning 2007
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Factors Affecting Genotype Imputation
Accuracy

* Size of reference panel
* Density of genotyping array

* Minor allele frequency of variant being imputed (in the reference
panel)

* Haplotype accuracy in reference and study samples
* Sequencing coverage of reference panel



What is Association Studies?

 Test associations between markers/SNPs/genes and the trait of
Interest

e Test whether the trait and genotype are independent

* Population Data
* Contingency table tests (dichotomous trait, e.g., case/control)
* Regression model based tests

* Family Data



Population-based Association Studies

* Phenotype(s) of interest

* Dichotomous trait, e.g., case/control

* Quantitative trait, e.g., Height, BMI, Lipids

* Mendelian (last lecture) vs. Complex (this lecture)
* Number of markers tested

* May range from 1 to ~10 million

e Candidate gene study (often appear as replication study)

 Genome-wide association study (GWAS)



Phenotype and covariate data

* Phenotype data
e Dichotomous traits: 0/ 1
* Quantitative traits : observed continuous quantitative values

* Covariate data
 Gender
* Age
* BMI, etc.



Single Variant GWAS

* Test one SNP per time
* Test genome-wide variants independently

 Suitable for common SNPs with minor allele frequency (MAF) > 1%, or
0.1%



Study Dichotomous Trait

* Compare frequencies of particular alleles, or genotypes, in set of

cases and controls
e Chi-square test using contingency tables

* Logistic regression model based tests



Chi-Square genotype test with contingency tables

* For example, we observe

Control

Case N1o N4q Nqo

* |s the observation is significantly different from what we would expect if trait and the
genotype are independent?

* Hy: No association between the trait and the genotype, i.e., sample with genotype
AA, Aa, or aa have the same probability to develop disease (to be a Case)

43



Chi-Square test

* Let O, denote the count in the it row and k" column in the
contingency table, and E, denote the corresponding expected count

e Test statistic

* If study sample size is large, the test statistic follows a chi-squared
distribution with degrees of freedom (I - 1)(K - 1) under H,, with |
rows and K columns in the contingency table.



How to Calculate E;?

* Contingency table

_“““ Row Total

Control
Case N4g Nqq N4> Ny,
Column Total ng n n, n

* Observed number of samples per cell: O, = n, ; with disease status (D) i =0, 1;
genotype (G) k=0, 1, 2

* Expected number of samples per cell: E, =n;n,/n, under independence of
disease status and genotype, npp-ipg=«x = n(n;./n)(n ,/n)

 Population genotype frequency: paa =N o/N; Pag=N1/N; Paa=n,/N

* Expected number of samples per cell: E;g=n;, paa; E1=N; Pas; En=N; Pas;
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Chi-square (y?) distribution

Critical value of X? chosen to attain desired a-level

Significance a-level
(area in blue) =
probability of making a
Type | error

Rejept H_ Type | error?

Fail to Reject H_

0 Critical X° p-value?
¥> statistic
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Example of Genotypic Association Test

e TCF7L2 for Type 2 Diabetes in Finns
e SNP rs12255372 has alleles T and G

GG GT TT

Case 661 255 20

Xe= ), ), (0y-E)*lE; Control| 724 354 50
i=0,1 j=0,1,2 _Total 1385 609 70

Total
936
1128

2064

Xz = (661 — 628.08)%/628.08 + ... ~ 14.08

p = .0009

~ ¥ df=2
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Contingency Tables under Dominant (risk allele A)
or Recessive (risk allele a) Disease Model

Control Ngo +No1
Case N1g tN1qq Nqo N,
Column Total Ng+nN 4 n, n

* Hy: No association between the trait (to be a Case or Control) and the
genotype being AA/Aa or aa
e Chi-square test statistic:

= Z Z(Oij_Eij)z/Eij ~ x4 df=1

i=0,1 j=0,1
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Example for Testing Dominant or Recessive

Disease Model

e TCF7L2 for Type 2 Diabetes in Finns
e SNP rs12255372 has alleles T and G

e Allele T is dominant to G

i — Eij)*/Eij

Y, df =1

'GG  GT+TT | Total
Case @ 661 255+20=275 936
Control | 724 354+50=404 1128
Total | 1385 609+70=679 2064

Xe=060 ~ 3% df=1

p =.0019
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Contingency Table for Allelic Association Test
—-—

Control Noa=2Noo*No; Noa=No1+2Ng,
Case Ny A=2N45+N 44 N,=N+2N4, 2n,
Column Total N A=2N,+nN 4 n_,=n,+2n, 2n

e Assume additive disease model
* Assume HWE

* Hy: No association between the trait (sample to be a Case or Control)
and the number of allele A in the sample genotype

X = Z Z(Oij_Eij)z/Eij ~ x4 df =1

i=0,1 j=0,1
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Example of Allelic Association Test
e TCF7L2 for Type 2 Diabetes in Finns
e SNP rs12255372 has alleles T and G

G T | Total
Case |1577 2951872
Control | 1802 454 | 2256
Total |3379 749 4128

X*~1313 ~ 4 df=1

p = .0003



Measure of Association Strength: Odds Ratio

Exposed (E) Not Exposed (E)
Case (D) a b
Control (D) i d

|

Odds ratio:

~ _ P(DIE)/P(DIE)

P(D|E)/P(D|E)

 P(E\D)/P(E|D)

~ P(E|D)/P(E|D)
= ad|/bc

— Exposed = carry certain genotype
— Counts pertain to individuals, not alleles.



Odds Ratio

Genotype Model (E=aa)

AA Aa aa

Case
Control

Mo N1 N2
Moo Mo A2

Dominant Model (E=aa)

AA or Aa aa

Case
Control

Mg+ N1 N2

Noo + N1 N2

Allele Model (E=a)

A a

Case
Control

2”10 +Rii Bid * 2!’112
2noo + No1 No1 + 2noo

ORper = (ny1002)/(ng1ny2)
ORpom = (n1ono2)/ (noon12)

ORp = [(n1o + nypneal/ [(neo + no1)niz2l

ORr = [(2njo + nm)(nor + 2np)]/[(2nge +
noy)(nyy +2ny2)]
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Confidence Interval for Odds Ratio

In large samples and when OR is estimated from the contingent table, log(ﬁ) IS

approximately normally distributed, with estimated variance
— 1.0 .0 . 1
Var[log(OR)] ~ — + -+ — + —,
a b c¢ d

where a, b, c,d are the cells contributing to the estimation of OR.

A (1 — @)100th confidence interval for the population OR :

explog(OR)j:z(l_“,/z) \/Var[log(OR)]

where z(1-,/2) is the (1 — a/2)100th percentile of the standard normal.
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Logistic Regression Model

— Y = dichotomous phenotype
— X = a coding for the genotype

__Genotype'_Codominant Dominant Recessive Additive

AA [ X=0,1D)T Xx=1 X=1 X=2
Aa X=1,07 Xx=1 X=0 X=1
aa X=0,0f X=0 X=0 X=0

Assume a logistic regression model:
- [Pr(Y = 1|1X)
Pi{Y = 0]X)
where S, is the intercept, a is the coefficient for covariates C, and g, is the genetic
effect-size (i.e., log(Odds-Ratio) ).

]=ﬁ0+aC+ﬁIX

Ho:,B1:0

Halﬁ|$0
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Test Statistic

: .7 = Ba -
Wald Test: Z = Standard Error(8) N (0, 1) under H,
—~2
. w2 _ B . _
Chi-square Test: X Var (5 Chi_Square with df=1 under H,

* How to obtain p-value?



Advantages of Logistic Regression Model

* Account for confounding covariates (C), e.g., age, gender, BMI,
smoking

* Flexible for various genetic models
* Flexible for testing multiple markers in the same model (modeling LD)

* Equivalent to the corresponding Chi-square test using contingency
tables, if not modeling covariates

* Allow gene-environment interactions
* Without the assumption of HWE



Study Quantitative Trait

* Linear regression model
Y =By+aC + ;X +¢€ e~N(0,0%)
* Y represents the quantitative trait values
* X represents the genotype data (0, 1, 2) for additive genetic model
* ( represents the confounding covariates or other environmental variables
* € represents the error term, other unknown factors

.HO:IB]_:O ,Haﬁ]_:)to

* P-values can be obtained by Wald Test, T-test, Score test, Log
likelihood test, etc.



Linear Regression Model

Phenotype

é,- = cor (GenotypeSNP,, Phenotype)

|

1
Genotype
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Genome-wide Association Study (GWAS)

GWAS: independent single-variant tests across all genome-wide variants

e Quality control (QC) of the study dataset

e Choose a model/test for the phenotype of interest (e.g., linear regression model
for quantitative traits, logistic regression model for dichotomous traits, other
association tests from previous lecture)

e Significance level @ = 5 x 107°

e Report nearby genes of significant SNPs
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Visualize GWAS Results by Manhattan Plot

— Scatter plot of —log 10(p-values) across all genome-wide variants
— Visualize signal peaks
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Visualize GWAS Loci by Locus Zoom Plot

— Zoom into the peak region with gene annotations

— Visualize r* between the specified significant (purple diamond) signal and its
neighbor SNPs

— Visualize recombination rate
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LocusZoom Visualization of GWAS of BMI , Women only
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LocusZoom Visualization of GWAS of BMI|

BMI meta-analysis, women only
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Example GWAS Discoveries

;;Alzhelmar disease and age of onset

12800 Sty | Glomerular filtration rate (creatinine)
Dfsense o Tra!l 2 | Educational attainment (years of education)
Disease or Trait 3 Menarche (age at onset) — e iy
S | |Blood metabolite levels el .
_ [ IHeignt S 5
\\ \. [Height: Number of Significant ) S i
100001 ! [yumber ot sqniicant] ., SNPS for the trait or disease [7Red blood cell traits ) 5 1097 |
§ W sps iothia year ) || Width: Fraction of publications | s atory b‘“"_l -
\ /| for the trait or disease Bone mineral density >IN
b > - - .
R tCeliac disease ; . |
Crohn's disease = [ - i |
o 79500 QT interval | Height [ 1086 ) i &
o I ey o Wit :
uz'.'l LDL cholesterol ';'p'd 3§ ichod i A = iy - /
4 Triglycerides bl a“ Zal B . Al Y
.; Crohn's disease : T \ i
.g g \ A i 861 ).
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2500 T il | N
II / o e
/Crohn's disease | y B __|HDL cholesterol
g \ //Q/ |t |Breast cancer
__________.- Metabolic traits . Rheumatoid arthritis
0 ® / . Platelet count
T _|Multiple sclerosis
Before 2008 2008 2009 2010 2011 2012 2013 2014 2015 Till 09/2016

Figure 2. GWAS SNP-Trait Discovery Timeline

Data used for generating the graph were taken from the GWAS Catalogue.

Time

' SNPs and traits were selected according to the following

filters. SNPs were selected with a p value < § x 107®. For each trait with two or more selected SNPs, SNPs were removed if they had
an LD r* > 0.5 (calculated from 1000 Genomes phase 3 data) with another selected SNPs and their p value was larger. For each year
of discovery, only the top three traits and diseases with the largest number of SNPs are labeled in the circle.

Visscher P.M.
et al. AJHG

2017.
66



GWAS Catalogue Results

2019 July

>157K Associations
from 4220 Publications

8% ,
i:.w www.ebi.ac.uk/gwas
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MAF Spectrum and Genetic Effect Sizes

Genetic architecture of complex traits
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Example links between GWAS discoveries and

drug developments

GWAS hits Drug
N\ 0
“-\\:z%
P T
> @ >}
\
Trait Gene with GWAS hits Known or candidate drug
Type 2 Diabetes SLC30A8/KCNJ11 ZnT-8 antagonists/Glyburide
Rheumatoid Arthritis PADI4/IL6R BB-Cl-amidine/Tocilizumab
Sp?)':llt(:l:fll‘i)t?:(‘iS) INFRN PTGERGSTYRR inhibitors/N Sl:\IDFs_/ fostamatinib
Psoriasis(Ps) IL23A Risankizumab
Osteoporosis RANKL/ESR1 Denosumab/Raloxifene and HRT ]
Schizophrenia DRD2 Anti-psychotics Visscher P.M.
LDL cholesterol HMGCR Pravastatin etal. AJHG
AS, Ps, Psoriatic Arthritis IL12B Ustekinumab 2017.
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GWAS Tools

* Michigan Imputation Server
e https://imputationserver.sph.umich.edu

e GWAS Tool

e PLINK: https://www.cog-genomics.org/plink/
e EPACTS: https://genome.sph.umich.edu/wiki/EPACTS

« GWAS Results Visualization and Manhattan/LocusZoom Plot Tool
e https://my.locuszoom.org/

70


https://imputationserver.sph.umich.edu/
https://www.cog-genomics.org/plink/
https://genome.sph.umich.edu/wiki/EPACTS
https://my.locuszoom.org/

Topics for Next Lecture

* Quality Control

* Population Stratification
* Genomic control factor
* Genotype principal components
* Meta-analysis

* Kingship Matrix
* Linear mixed model (LMM)

 Heritability estimation by REML/GCTA



