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Outline

• Genotype Calling and Imputation
• Single Variant Test (common variants with MAF > 1%)
• Dichotomous Trait

• Chi-square test with contingency tables
• Logistic regression model based test

• Quantitative Trait
• General linear regression model based test

• Visualization by Manhattan plot and LocusZoom plot
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DNA Microarrays

• Old generation of technology 

(Affymetrix or Illumina)

• Still widely used for cheap 

cost, ~$200 / sample

• Can be customized with 

densely spaced SNPs for target 

genes

• Genotype 0.5 Million ~ 1 

Million SNPs
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Variant Calling for Microarray Genotyping
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• Each SNP has three possible genotypes: AA, BB, AB with two alleles A and B
• Summarize the probe intensities for each allele and SNP, and then make a call based on the 

summarized intensities

Lamy P. et. al. Human Genomics, 2011.



Whole Genome Sequencing (WGS)
• Next-generation 

sequencing 
technology
• Introduction video of 

Illumina Sequencing 
technology: 
https://www.youtub
e.com/watch?v=fCd6
B5HRaZ8
• Cost ~$2000/sample
• Profile >10M SNPs
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https://www.youtube.com/watch?v=fCd6B5HRaZ8


WGS Analysis Workflow
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Variant Calling for Sequence Genotyping
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Variant Calling for Sequence Genotyping
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• Assume the probability to sequence “C” given “A”, or 
sequence “A” given “C” is 0.001:

P(reads | AA) = dbinom(3, size = 5, prob = 0.001) = 9.98e-9
P(reads | AC) = dbinom(3, size = 5, prob = 0.5) = 0.312
P(reads | CC) = dbinom(2, size = 5, prob = 0.001) = 9.97e-6

• Assume population based prior with P(A) = 0.2
Prior(AA) = 0.04; Prior(AC) = 0.32; Prior (CC) = 0.64

Posterior(AA) < 0.001 
Posterior(AC) = 0.999 
Posterior(CC) < 0.001



Genotype data format
• Single nucleotide polymorphism (SNP) : One reference allele and one 

alternative allele, e.g., AG, AA, GG
• Variant Call Format (VCF): Text file recording one SNP per row
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Human genetic variants and sample sizes over 
past 20 years
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HapMap Project (2002 - 2010)

• Goal: Develop a haplotype map of the human genome.
• The HapMap is valuable by reducing the number of SNPs required to 

examine the entire genome for association with a phenotype from the 10 
million SNPs that exist to roughly 500,000 tag SNPs.
• Phase II HapMap characterizes >3.1M SNPs (~1.3M from Phase I) 

genotyped in 270 individuals from 4 populations, including 25-35% 
common SNPs (~10M), one per kilobase.
• 30 trios of Yoruba (YRI) in Ibadan, Nigeria : African
• 30 trios of Centre d’Etude du Polymorphisme Humain (CEPH) collection (CEU) living 

in Utah : European
• 45 unrelated Han Chinese individuals in Beijing (CHB) + 45 unrelated Japanese in 

Tokyo (JPT) : Asian
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The International HapMap Consortium. Nature 449, 851-861 (2007).



Figure 1: SNP density in the Phase II HapMap.
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The International 
HapMap Consortium. 
Nature 449, 851-861 
(2007).



1000 Genome Project 
(2008 - 2015)
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Goal: Find most genetic variants with MAF > 
1% in populations across the world.
• First project to sequence (~8X coverage) 

the genomes of a large number of people 
(n = 2504)

• Largest public catalogue of human variation 
and genotype data:  
http://www.internationalgenome.org/

• 26 different populations under 5 super 
populations:

The 1000 Genomes Project 
Consortium. Nature 526, 68-74 
(2015).

http://www.internationalgenome.org/


Table 1. Median autosomal variant sites per genome in 1000 genome project
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The 1000 Genomes Project 
Consortium. Nature 526, 68-74 
(2015).



Impute Microarray Genotype Data

• Using WGS reference panel, e.g., 1000 Genome
• Fill in SNP genotypes for those note genotyped by Microarray
• Genotype imputation has become a standard tool in GWAS
• Can only impute variants observed in a reference panel. Reference panels 

with millions of deeply sequenced individuals are available.
• Result in ~10M imputed common variants 
• Improve GWAS power
• Facilitating fine-mapping and meta-analysis
• Facilitating GWAS results interpretation
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Genotype Imputation Intuition

• Any two individuals, even if unrelated, can share short stretches of 
chromosome derived from a distant common ancestor.
• Observed genotypes from Microarray can be used to identify DNA 

segments shared between the study sample and a reference panel of 
sequenced genomes.
• A study haplotype can be represented as a mosaic of short segments of 

related haplotypes found in the reference panel.
• Points where the reference haplotype template changes represent 

historical recombination events.
• Points where the observed target allele differs from the template allele 

represent historical mutation events, gene conversion events, genotype 
error, or erroneously assigned matches.
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Li and Stephens Mode

• Hidden Markov Model (HMM)
• Observed genotypes of unknown 

phase in a study sample represent 
the observed data of the HMM.

• Underlying and unobserved set of 
phased genotypes represent the 
hidden states of the HMM.

• Probability of a template switch 
between markers is determined by 
the HMM transition probabilities, 
related to population 
recombination rate.

• Probability that an observed allele 
differs from the template is 
determined by the HMM emission 
probabilities.
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HMM
• The probability of each possible unobserved path through the HMM 

hidden states (reference haplotypes) can be calculated.
• Penalized when path switches reference haplotypes via HMM transition 

probability
• Penalized when reference allele on the path differs from the observed allele 

via HMM emission probabilities
• Probability that the unobserved path goes through a particular HMM 

state (state probability per reference haplotype) can be calculated by 
HMM forward-backward algorithm
• The probability (Z) that the target haplotype (study sample) carries a 

particular allele is the sum of the state probabilities corresponding to 
reference haplotypes that carry the allele
• Z is also the expected number of a particular allele
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Phasing

• Pre-phasing genotype data of the study sample greatly reduce 
computation burden of genotype imputation
• First pre-phasing (haplotype estimation) of the genotypes of study samples
• Imputation into the estimated study haplotypes

• Reduce the complexity of the imputation step from quadratic to 
linear in the number of reference haplotypes
• Allowing matches to be found by comparing against phased sample 

haplotypes rather than against all pairs of sample haplotypes
• Reduce cost for exploring multiple reference panels
• Benefits from advanced phasing methods
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Techniques for Computation Efficiency

• Storing reference data in memory

• Burrows-Wheeler Transform

• M3VCF format :exploits local redundancy among haplotypes by only storing 

unique allele sequences along with a map

• Reduce >90% computation time compared with using VCF format with >100K reference 

samples

• Allowing reference haplotypes to be locally clustered

• Binary reference format (bref) : Because of the bulk of alleles with low 

nonmajor allele frequency in reference panel, only store a list of reference 

haplotypes that carry the minor allele (one list per allele)

• Searching the lists of haplotypes to find the allele on a given haplotype

• If haplotype is not found in any list, the haplotype carries the major allele

• Reduces >30% computation time with >100K reference samples
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Techniques for Computation Efficiency
• Clustering identical reference haplotype segments
• Conduct local clustering ahead for the reference panel
• Same allele sequence can be carried by many reference haplotypes in short 

regions
• Reduce state space for non-boundary regions

• Imputation via linear interpolation
• HMM state probabilities are calculated for genotyped markers of the study 

sample
• HMM state probabilities at imputed markers are estimated by linear 

interpolation on genetic distance
• One can cluster reference haplotypes that have identical allele 

sequences between two genotyped markers before linear 
interpolation
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Measuring Imputation Accuracy
• Imputation methods estimate a probability distribution for the allele 

carried by each haplotype per imputed marker
• Posterior genotype probabilities can be derived under HWE
• Expected allele dose (dosage) of the imputed genotype is given by the 

sum of the posterior allele probabilities for each haplotype –– used 
for follow-up GWAS
• Imputation r2 : squared correlation between the true and estimated 

dose of an allele across all imputed samples
• Can be estimated from posterior allele probabilities without knowing the true 

allele
• Threshold 0.3 is commonly used
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Impute Microarray Genotype Data

• Using WGS reference panel, e.g., 1000 Genome
• Fill in SNP genotypes for those not genotyped by Microarray
• Check imputation r2 : accept imputed genotypes with r2 > e.g., 0.3
• Result in ~10M common variants 
• Imputed genotype data 
• Dosage format –– expected number of minor alleles with domain [0, 2]
• Genotype format –– number of minor alleles with values 0, 1, or 2
• Genotype with the highest estimated probability will be reported
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Factors Affecting Genotype Imputation 
Accuracy
• Size of reference panel
• Density of genotyping array
• Minor allele frequency of variant being imputed (in the reference 

panel)
• Haplotype accuracy in reference and study samples
• Sequencing coverage of reference panel

37



What is Association Studies?

• Test associations between markers/SNPs/genes and the trait of 
interest
• Test whether the trait and genotype are independent

• Population Data
• Contingency table tests (dichotomous trait, e.g., case/control)
• Regression model based tests

• Family Data
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Population-based Association Studies

• Phenotype(s) of interest
• Dichotomous trait, e.g., case/control

• Quantitative trait, e.g., Height, BMI, Lipids

• Mendelian (last lecture) vs. Complex (this lecture)

• Number of markers tested
• May range from 1 to ~10 million

• Candidate gene study (often appear as replication study)

• Genome-wide association study (GWAS)
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Phenotype and covariate data

• Phenotype data
• Dichotomous traits : 0 / 1
• Quantitative traits : observed continuous quantitative values

• Covariate data
• Gender
• Age
• BMI, etc.
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Single Variant GWAS

• Test one SNP per time
• Test genome-wide variants independently
• Suitable for common SNPs with minor allele frequency (MAF) > 1%, or 

0.1%
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Study Dichotomous Trait

• Compare frequencies of particular alleles, or genotypes, in set of 
cases and controls
• Chi-square test using contingency tables
• Logistic regression model based tests
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Chi-Square genotype test with contingency tables

• For example, we observe

• Is the observation is significantly different from what we would expect if trait and the 
genotype are independent?

• H0: No association between the trait and the genotype, i.e., sample with genotype 
AA, Aa, or aa have the same probability to develop disease (to be a Case)
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AA Aa aa
Control n00 n01 n02

Case n10 n11 n12



Chi-Square test

• Let Oik denote the count in the ith row and kth column in the 
contingency table, and Eik denote the corresponding expected count
• Test statistic

• If study sample size is large, the test statistic follows a chi-squared 
distribution with degrees of freedom (I - 1)(K - 1) under H0 , with I 
rows and K columns in the contingency table.

X 2 =
Oik − Eik( )2

Eikk=1

K

∑
i=1

I

∑ ~ χ 2
I −1( ) K −1( )
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How to Calculate Eik?
• Contingency table

• Observed number of samples per cell: Oik = nik ; with disease status (D) i = 0, 1; 
genotype (G) k = 0, 1, 2

• Expected number of samples per cell:  Eik = ni.n.k/n , under independence of 
disease status and genotype, npD=ipG=k = n(ni./n)(n.k/n)

• Population genotype frequency: pAA = n.0/n; pAa = n.1/n ; paa = n.2/n

• Expected number of samples per cell:  Ei0=ni. pAA ; Ei1=ni. pAa ; Ei2=ni. paa ;
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AA Aa aa Row Total
Control n00 n01 n02 n0.

Case n10 n11 n12 n1.

Column Total n.0 n.1 n.2 n



Chi-square (χ2) distribution

0
χ2 statistic

Critical value of X2 chosen to attain desired α-level

Significance α-level 
(area in blue) = 
probability of making a 
Type I error 

Type I error? 
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p-value?



Example of Genotypic Association Test
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Contingency Tables under Dominant (risk allele A) 
or Recessive (risk allele a) Disease Model

AA or Aa aa Row Total
Control n00 +n01 n02 n0.

Case n10 +n11 n12 n1.
Column Total n.0 +n.1 n.2 n
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• H0: No association between the trait (to be a Case or Control) and the 
genotype being AA/Aa or aa

• Chi-square test statistic: 



Example for Testing Dominant or Recessive 
Disease Model
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Contingency Table for Allelic Association Test

• Assume additive disease model
• Assume HWE
• H0: No association between the trait (sample to be a Case or Control) 

and the number of allele A in the sample genotype

A a Row Total
Control n0A=2n00+n01 n0a=n01+2n02 2n0.

Case n1A=2n10+n11 n1a=n11+2n12 2n1.
Column Total n.A=2n.0+n.1 n.a=n.1+2n.2 2n
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Example of Allelic Association Test

51



Measure of Association Strength: Odds Ratio
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Odds Ratio
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Confidence Interval for Odds Ratio
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Logistic Regression Model
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Test Statistic

• Wald Test: ! = #$%
&'()*(+*_-++.+(#$%)

~2 0, 1 under H0

• Chi-square Test: X7 = #$%
8

9(+(#$%)
~ :ℎ<_=>?@AB with df=1 under H0

• How to obtain p-value?
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Advantages of Logistic Regression Model

• Account for confounding covariates (C), e.g., age, gender, BMI, 
smoking
• Flexible for various genetic models
• Flexible for testing multiple markers in the same model (modeling LD)
• Equivalent to the corresponding Chi-square test using contingency 

tables, if not modeling covariates
• Allow gene-environment interactions
• Without the assumption of HWE

57



Study Quantitative Trait

• Linear regression model
• ! = #$ + &' + #() + *, *~- 0, /0
• ! represents the quantitative trait values
• ) represents the genotype data (0, 1, 2) for additive genetic model
• ' represents the confounding covariates or other environmental variables
• * represents the error term, other unknown factors

• 1$: #( = 0 ; 13: #( ≠ 0
• P-values can be obtained by Wald Test, T-test, Score test, Log 

likelihood test, etc.
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Linear Regression Model
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Genome-wide Association Study (GWAS)
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Visualize GWAS Results by Manhattan Plot
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Fritsche L.G. 
et al. Nat 
Genet, 2016.



Visualize GWAS Loci by Locus Zoom Plot
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Fritsche L.G. 
et al. Nat 
Genet, 2016.



LocusZoom Visualization of GWAS of BMI , Women only
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LocusZoom Visualization of GWAS of BMI
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Example GWAS Discoveries
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Visscher P.M. 
et al. AJHG 
2017.



GWAS Catalogue Results
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MAF Spectrum and Genetic Effect Sizes
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Example links between GWAS discoveries and 
drug developments
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Visscher P.M. 
et al. AJHG 
2017.



GWAS Tools

• Michigan Imputation Server
• https://imputationserver.sph.umich.edu

• GWAS Tool
• PLINK: https://www.cog-genomics.org/plink/
• EPACTS: https://genome.sph.umich.edu/wiki/EPACTS

• GWAS Results Visualization and Manhattan/LocusZoom Plot Tool
• https://my.locuszoom.org/
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https://imputationserver.sph.umich.edu/
https://www.cog-genomics.org/plink/
https://genome.sph.umich.edu/wiki/EPACTS
https://my.locuszoom.org/


Topics for Next Lecture

• Quality Control
• Population Stratification
• Genomic control factor
• Genotype principal components
• Meta-analysis

• Kingship Matrix
• Linear mixed model (LMM)
• Heritability estimation by REML/GCTA
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