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Outline

• Genotype Calling and Imputation

• Single Variant Test (common variants with MAF > 1%)
• Dichotomous Trait

• Logistic regression model based test

• Quantitative Trait
• Linear regression model based test

• Visualization GWAS Results by Manhattan plot and LocusZoom plot
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DNA Microarrays

• Old generation of technology 
(Affymetrix or Illumina)

• Still widely used for cheap 
cost, ~$200 / sample

• Can be customized with 
densely spaced SNPs for target 
genes

• Genotype 0.5 Million ~ 1 
Million SNPs
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Variant Calling for Microarray Genotyping
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• Each SNP has three possible genotypes: AA, BB, AB with two alleles A and B

• Summarize the probe intensities for each allele and SNP, and then make a call based on the 
summarized intensities

Lamy P. et. al. Human Genomics, 2011.



Whole Genome Sequencing (WGS)
• Next-generation 

sequencing 
technology

• Introduction video of 
Illumina Sequencing 
technology: 
https://www.youtub
e.com/watch?v=fCd6
B5HRaZ8 

• Profile >10M SNPs
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https://www.youtube.com/watch?v=fCd6B5HRaZ8
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Whole Genome Sequencing Now Costs ~$600/sample 
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WGS Analysis Workflow
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FastQC

Cutadapt: Read trimming

Bowtie2
GATK : 

•Multiple-sequence realignment
•Quality score recalibration
•SNP genotyping
•Indel discovery and genotyping

https://www.cd-genomics.com/bioinformatics-
workflow-for-whole-genome-sequencing.html 

SPAdes Genome Assembler: For Illumina sequencing. Align overlapping reads 
to form longer contigs (larger contiguous sequences) and order the contigs 
into scaffolds (a framework of the sequenced genome).

VEP: Annotate biological functions of called variants.

http://www.bioinformatics.babraham.ac.uk/projects/fastq
https://cutadapt.readthedocs.io/en/stable/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://software.broadinstitute.org/gatk/
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DRAGEN-GATK Whole Genome 
Germline Pipeline for Variant 
Discovery

• https://app.terra.bio/#workspac
es/warp-pipelines/DRAGEN-
GATK-Whole-Genome-Germline-
Pipeline

• https://broadinstitute.github.io/
warp/docs/Pipelines/Whole_Gen
ome_Germline_Single_Sample_P
ipeline/README
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Variant Calling for Sequence Genotyping
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Variant Calling for Sequence Genotyping
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• Assume the probability to sequence “C” given “A”, or 
sequence “A” given “C” is 0.001:

P(reads | AA) = dbinom(3, size = 5, prob = 0.001) = 9.98e-9
P(reads | AC) = dbinom(3, size = 5, prob = 0.5) = 0.312
P(reads | CC) = dbinom(2, size = 5, prob = 0.001) = 9.97e-6

• Assume population based prior allele frequency P(A) = 0.2: 
Prior(AA) = 0.04; Prior(AC) = 0.32; Prior (CC) = 0.64
• Posterior(AA) < 0.001 
• Posterior(AC) = 0.999 
• Posterior(CC) < 0.001



Genotype data format
• Single nucleotide polymorphism (SNP) : One reference allele and one 

alternative allele, e.g., AG, AA, GG

• Variant Call Format (VCF): Text file recording one SNP per row
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Human genetic variants and sample sizes over 
past 20 years
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HapMap Project (2002 - 2010)

• Goal: Develop a haplotype map of the human genome.

• The HapMap is valuable by reducing the number of SNPs required to 
examine the entire genome for association with a phenotype from the 10 
million SNPs that exist to roughly 500,000 tag SNPs.

• Phase II HapMap characterizes >3.1M SNPs (~1.3M from Phase I) 
genotyped in 270 individuals from 4 populations, including 25-35% 
common SNPs (~10M), one per kilobase.
• 30 trios of Yoruba (YRI) in Ibadan, Nigeria : African
• 30 trios of Centre d’Etude du Polymorphisme Humain (CEPH) collection (CEU) living 

in Utah : European
• 45 unrelated Han Chinese individuals in Beijing (CHB) + 45 unrelated Japanese in 

Tokyo (JPT) : Asian

13
The International HapMap Consortium. Nature 449, 851-861 (2007).



Figure 1: SNP density in the 
Phase II HapMap.
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The International HapMap Consortium. 
Nature 449, 851-861 (2007).



1000 Genome Project 
(2008 - 2015)
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Goal: Find most genetic variants with MAF > 
1% in populations across the world.
• First project to sequence (~8X coverage) 

the genomes of a large number of people 
(n = 2504)

• Largest public catalogue of human variation 
and genotype data:  
http://www.internationalgenome.org/ 

• 26 different populations under 5 super 
populations:

The 1000 Genomes Project 
Consortium. Nature 526, 68-74 
(2015).

http://www.internationalgenome.org/


Table 1. Median autosomal variant sites per genome in 1000 genome project
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The 1000 Genomes Project 
Consortium. Nature 526, 68-74 
(2015).



Sequencing of 
53,831 diverse 
genomes from 
the NHLBI 
TOPMed 
Program, Taliun 
D. et. al. Nature 
2021.
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https://www.nature.com/articles/s41586-021-03205-y
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the NHLBI 
TOPMed 
Program, Taliun 
D. et. al. Nature 
2021.
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Impute Microarray Genotype Data

• Using WGS reference panel, e.g., 1000 Genome, TOPMed

• Fill in SNP genotypes for those not genotyped by Microarray

• Genotype imputation has become a standard tool in GWAS
• Can only impute variants observed in a reference panel. Reference panels 

with millions of deeply sequenced individuals are available.

• Result in ~10M imputed common variants 

• Improve GWAS power

• Facilitating fine-mapping and meta-analysis

• Facilitating GWAS results interpretation
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Genotype Imputation Intuition

• Any two individuals, even if unrelated, can share short stretches of 
chromosome derived from a distant common ancestor.

• Observed genotypes from Microarray can be used to identify DNA 
segments shared between the study sample and a reference panel of 
sequenced genomes.

• A study haplotype can be represented as a mosaic of short segments of 
related haplotypes found in the reference panel.

• Points where the reference haplotype template changes represent 
historical recombination events.

• Points where the observed target allele differs from the template allele 
represent historical mutation events, gene conversion events, genotype 
error, or erroneously assigned matches.
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Homologous recombination 
is a type of genetic 
recombination in which 
nucleotide sequences are 
exchanged between two 
similar or identical molecules 
of DNA. During the 
formation of egg and sperm 
cells (meiosis), paired 
chromosomes from the male 
and female parents align so 
that similar DNA sequences 
can cross over, or be 
exchanged, from one 
chromosome to the other. 
This exchanging of DNA is an 
important source of the 
genomic variation seen 
among offspring.
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Recombination and Inheritance
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Haplotypes, Genotypes, and Phenotypes
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The problem of Haplotype 
Inference referred to as 
Haplotype Phasing. Genotyping 
technologies obtain “genotype” 
information on SNPs which mixes 
the genetic information from 
both chromosomes. However, 
many genetic analyses require 
“haplotype” information (like 
genotype imputation) which is 
the genetic information on each 
chromosome (see Figure).
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Li and Stephens Hidden Markov Mode

• Hidden Markov Model (HMM)
• Observed genotypes of unknown 

phase in a study sample represent 
the observed data of the HMM.

• Underlying and unobserved set of 
phased genotypes represent the 
hidden states of the HMM.

• Probability of a template switch 
between markers is determined by 
the HMM transition probabilities, 
related to population 
recombination rate.

• Probability that an observed allele 
differs from the template is 
determined by the HMM emission 
probabilities.
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HMM

• The probability of each possible unobserved path through the HMM 
hidden states (reference haplotypes) can be calculated.
• Penalized when path switches reference haplotypes via HMM transition 

probability
• Penalized when reference allele on the path differs from the observed allele 

via HMM emission probabilities

• Probability that the unobserved path goes through a particular HMM 
state (state probability per reference haplotype) can be calculated by 
HMM forward-backward algorithm

• The probability (Z) that the target haplotype (study sample) carries a 
particular allele is the sum of the state probabilities corresponding to 
reference haplotypes that carry the allele
• Z is also the expected number of a particular allele
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Phasing

• Pre-phasing genotype data of the study sample greatly reduce 
computation burden of genotype imputation
• First pre-phasing (haplotype estimation) of the genotypes of study samples

• Imputation into the estimated study haplotypes

• Reduce the complexity of the imputation step from quadratic to 
linear in the number of reference haplotypes
• Allowing matches to be found by comparing against phased sample 

haplotypes rather than against all pairs of sample haplotypes

• Reduce cost for exploring multiple reference panels

• Benefits from advanced phasing methods
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Techniques for Computation Efficiency

• Storing reference data in memory
• Burrows-Wheeler Transform
• M3VCF format :exploits local redundancy among haplotypes by only storing 

unique allele sequences along with a map
• Reduce >90% computation time compared with using VCF format with >100K reference 

samples
• Allowing reference haplotypes to be locally clustered

• Binary reference format (bref) : Because of the bulk of alleles with low 
nonmajor allele frequency in reference panel, only store a list of reference 
haplotypes that carry the minor allele (one list per allele)
• Searching the lists of haplotypes to find the allele on a given haplotype
• If haplotype is not found in any list, the haplotype carries the major allele
• Reduces >30% computation time with >100K reference samples
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Minimac3: Das S. 
et. al. Nat. Genet. 
2016

https://pubmed.ncbi.nlm.nih.gov/27571263/
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Techniques for Computation Efficiency
• Clustering identical reference haplotype segments

• Conduct local clustering ahead for the reference panel
• Same allele sequence can be carried by many reference haplotypes in short 

regions
• Reduce state space for non-boundary regions

• Imputation via linear interpolation
• HMM state probabilities are calculated for genotyped markers of the study 

sample
• HMM state probabilities at imputed markers are estimated by linear 

interpolation on genetic distance

• One can cluster reference haplotypes that have identical allele 
sequences between two genotyped markers before linear 
interpolation
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et. al. Nat. Genet. 
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Minimac3: Das S. 
et. al. Nat. Genet. 
2016
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Das S. et. al. 
Annual Reviews. 
2018.

https://doi.org/10.1146/annurev-genom-083117-021602
https://doi.org/10.1146/annurev-genom-083117-021602
https://doi.org/10.1146/annurev-genom-083117-021602


Measuring Imputation Accuracy
• Imputation methods estimate a probability distribution for the allele 

carried by each haplotype per imputed marker

• Posterior genotype probabilities can be derived under HWE

• Expected allele dose (dosage) of the imputed genotype is given by the 
sum of the posterior allele probabilities for each haplotype –– used 
for follow-up GWAS

• Imputation r2 : Squared correlation between the true and estimated 
dose of an allele across all imputed samples
• Can be estimated from posterior allele probabilities without knowing the true 

allele

• Threshold 0.3 is commonly used
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Das S. et. al. Annual 
Reviews. 2018.
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Das S. et. al. Annual 
Reviews. 2018.
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Summary of Genotype Imputation

• Using WGS reference panel, e.g., 1000 Genome, TOPMed

• Fill in SNP genotypes for those not genotyped by Microarray

• Check imputation r2 : accept imputed genotypes with r2 > e.g., 0.3

• Result in ~10M common variants 

• Imputed genotype data 
• Dosage format –– expected number of minor alleles with domain [0, 2]

• Genotype format –– number of minor alleles with values 0, 1, or 2

• Genotype with the highest estimated probability will be reported
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Das S. et. al. Annual 
Reviews. 2018.

https://doi.org/10.1146/annurev-genom-083117-021602
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Factors Affecting Genotype Imputation 
Accuracy
• Size of reference panel

• Density of genotyping array

• Minor allele frequency of variant being imputed (in the reference 
panel)

• Haplotype accuracy in reference and study samples

• Sequencing coverage of reference panel (ancestry matches)

45



What is Association Studies?

• Test associations between markers/SNPs/genes and the trait of 
interest

• Test whether the trait and genotype are independent

• Population Data: Generalized linear regression model based tests

• Family Data
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Population-based Association Studies

• Phenotype(s) of interest

• Dichotomous trait, e.g., case/control

• Quantitative trait, e.g., Height, BMI, Lipids

• Mendelian vs. Complex phenotypes

• Number of markers tested

• May range from 1 to ~10 million

• Candidate gene study (often appear as replication study)

• Genome-wide association study (GWAS)
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Phenotype and covariate data

• Phenotype data
• Dichotomous traits : 0 / 1

• Quantitative traits : observed continuous quantitative values

• Covariate data
• Gender

• Age

• BMI

• Batches, etc.
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Single Variant GWAS

• Test one SNP per time

• Test genome-wide variants independently

• Suitable for common SNPs with minor allele frequency (MAF) > 1%, or 
0.1%
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Logistic Regression Model for Studying Dichotomous 
Phenotype
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Test Statistic

• Wald Test: 𝑍 =
෢𝛽1

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝐸𝑟𝑟𝑜𝑟( ෢𝛽1)
~𝑁 0, 1  under H0 

• Chi-square Test: X2 =
෢𝛽1

2

𝑉𝑎𝑟( ෢𝛽1)
~ 𝐶ℎ𝑖_𝑆𝑞𝑢𝑎𝑟𝑒 with df=1 under H0 

• How to obtain p-value?
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Advantages of Logistic Regression Model

• Account for confounding covariates (C), e.g., age, gender, BMI, 
smoking

• Flexible for various genetic models

• Flexible for testing multiple markers in the same model (modeling LD)

• Equivalent to the corresponding Chi-square test using contingency 
tables, if not modeling covariates

• Allow gene-environment interactions

• Without the assumption of HWE
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Study Quantitative Trait

• Linear regression model
• 𝑌 = 𝛽0 + 𝛼𝐶 + 𝛽1𝑋 + 𝜖, 𝜖~𝑁 0, 𝜎2

• 𝑌 represents the quantitative trait values

• 𝑋 represents the genotype data (0, 1, 2) for additive genetic model

• 𝐶 represents the confounding covariates or other environmental variables

• 𝜖 represents the error term, other unknown factors

• 𝐻0: 𝛽1 = 0  ; 𝐻𝑎: 𝛽1 ≠ 0  

• P-values can be obtained by Wald Test, T-test, Score test, Log 
likelihood test, etc.
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Genome-wide Association Study (GWAS)
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Visualize GWAS Results by Manhattan Plot
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Fritsche L.G. 
et al. Nat 
Genet, 2016.



Visualize GWAS Loci by Locus Zoom Plot
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Fritsche L.G. 
et al. Nat 
Genet, 2016.



LocusZoom Visualization of GWAS of BMI , Women only
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LocusZoom Visualization of GWAS of BMI
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Example GWAS Discoveries
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Visscher P.M. 
et al. AJHG 
2017.
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Abdellaoui A, et. al. 
15 years of GWAS 
discovery: Realizing 
the promise. AJHG. 
2023.



GWAS 
Catalogue 
Diagram
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MAF 
Spectrum 
and 
Genetic 
Effect Sizes
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Example links between GWAS discoveries and 
drug developments

65

Visscher P.M. 
et al. AJHG 
2017.



GWAS Tools

• Michigan Imputation Server
• https://imputationserver.sph.umich.edu 

• GWAS Tool
• PLINK: https://www.cog-genomics.org/plink/2.0/ 

• EPACTS: https://genome.sph.umich.edu/wiki/EPACTS 

• GWAS Results Visualization and Manhattan/LocusZoom Plot Tool
• https://my.locuszoom.org/ 
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Outline of Next Lecture

• Quality Control
• Genotype Quality Control

• Sample Relatedness: Kingship Coefficient

• Population Stratification
• Genomic Control Factor

• Genotype Principal Components Analysis

• Meta-analysis

• Linear Mixed Model (LMM)
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