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Outline

* Genotype Calling and Imputation

* Single Variant Test (common variants with MAF > 1%)

* Dichotomous Trait
 Logistic regression model based test

* Quantitative Trait
* Linear regression model based test

* Visualization GWAS Results by Manhattan plot and LocusZoom plot



DNA Microarrays

* Old generation of technology
(Affymetrix or lllumina)

* Still widely used for cheap
cost, ¥S200 / sample

* Can be customized with
densely spaced SNPs for target
genes

* Genotype 0.5 Million ™
Million SNPs
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Variant Calling for Microarray Genotyping

* Each SNP has three possible genotypes: AA, BB, AB with two alleles A and B

 Summarize the probe intensities for each allele and SNP, and then make a call based on the
summarized intensities

SNP on the X chromosome
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the two allele intensities), and the R-coordinate represents the copy number (the length
of the vector). (A) Intensities for a single nucleotide polymorphism (SNP) from 120
arrays, clearly separating the intensities into three groups (A/A, A/B, B/B). (B) Data
from 317,000 SNPs (from the same 120 arrays). This plot clearly indicates that signal
strength varies considerably with the SNP, a factor that must be taken into account
when genotyping individual SNPs and deriving copy numbers. The figure is

Normalised and summarised allele intensities from the Affymetrix GeneChip
array. Each SNP is represented by a pair of intensity values (A, B) for the A and B
alleles, respectively (here, on a log-scale). An X chromosome SNP is shown,
clearly indicating separation into distinct genotype clusters. The plot also shows
that different copy numbers can be distinguished. Males are haploid for the
particular SNP (ie either AY or BY) and show up as homozygous but with reduced

reproduced with the permission of Gunderson et al. [15] allele intensity. Grey: BY; blue: BB; green: AB; red: AA; and pink: AY.

Lamy P. et. al. Human Genomics, 2011.



Whole Genome Sequencing (WGS)

H The Whole Genome Sequencing (WGS) Process
] -
N eXt ge n e ra t I O n WGS is a laboratory procedure that determines the order of bases in the genome of an

organism in one process. WGS provides a very precise DNA fingerprint that can help

S e q u e n C i n g link cases to one another allowing an outbreak to be detected and solved sooner.
te C h n O I O gy Bacterial Culture

4. DNA Library Sequencing

o The DNA library is loaded onto a
sequencer. The combination of
nucleotides (A, T, C, and G) making
up each individual fragment of DNA
is determined, and each result is
called a “DNA read.”

* Introduction video of
lllumina Sequencing

5. DNA Sequence Analysis

fragments generated in a
PCR machine is called a
“DNA library.” 3
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https://www.youtube.com/watch?v=fCd6B5HRaZ8
https://www.youtube.com/watch?v=fCd6B5HRaZ8
https://www.youtube.com/watch?v=fCd6B5HRaZ8

Whole Genome Sequencing Now Costs ~$600/sample

Cost per Human Genome

$100,000,000

$10,000,000

Moore’s Law
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$10,000
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WGS Analysis Workflow

Reads

Raw read quality control =TI{e[e

Contigs

Scaffolds

Data preprocessing ' Cutadapt: Read trimming
GATK :
Bowtie2 Alignment *Multiple-sequence realignment

*Quality score recalibration
*SNP genotyping
*Indel discovery and genotyping

Variant calling |

SPAdes Genome Assembler: For lllumina sequencing. Align overlapping reads
to form longer contigs (larger contiguous sequences) and order the contigs
into scaffolds (a framework of the sequenced genome).

Genome assembly

Genome annotation

" VEP: Annotate biological functions of called variants.

Other advanced analyses

https://www.cd-genomics.com/bioinformatics-
Figure 1. Bioinformatics workflow of whole genome sequencing. workflow-for-whole-genome-sequencing.html
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http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://software.broadinstitute.org/gatk/
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DRAGEN-GATK Whole Genome
Germline Pipeline for Variant
Discovery

* https://app.terra.bio/#workspac
es/warp-pipelines/DRAGEN-
GATK-Whole-Genome-Germline-
Pipeline

* https://broadinstitute.github.io/
warp/docs/Pipelines/Whole Gen

ome Germline Single Sample P

ipeline/README

Raw Unmapped Reads
uBAM or FASTQ
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Variant Calling for Sequence Genotyping

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT
ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads

5 -ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3!
Reference Genome

P(reads|Genotype)Prior(Genotype)

P —1
(Genotype|reads) Y. P(reads|G)Prior(G)

Combine these likelihoods with a prior incorporating information from other
individuals and flanking sites to assign a genotype.

Ingredients That Go Into Prior

* Most sites don’t vary
— P(non-reference base) ~ 0.001

* When a site does vary, it is usually heterozygous
— P(non-reference heterozygote) ~ 0.001 * 2/3
— P(non-reference homozygote) ~ 0.001 * 1/3

* Mutation model

— Transitions account for most variants (C<=>T or A¢&>G)
— Transversions account for minority of variants



Variant Calling for Sequence Genotyping

* Individual Based Prior

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT — Assumes all sites have an equal probability of showing polymorphism

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC — Specifically, assumption is that about 1/1000 bases differ from reference
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC — If reads where error free and sampling Poisson ...
AGCTGATAGCTA CTA CTGATGAGCCCGATCGCT — ... 14x coverage would allow for 99.8% genotype accuracy
— ... 30x coverage of the genome needed to allow for errors and clustering
CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

Sequence Reads
5'-ACTC GTCGATGCTAGCTGATAGCTAG CTAG CTGATGAG CCCGATCGCTGCTAGCTCGAC-y  ©  Population Based Prior

Reference Genome - Use§ frequency informationiobtain.ed fron"i examining other individuals
— Calling very rare polymorphisms still requires 20-30x coverage of the genome
- . — Calling common polymorphisms requires much less data
* Assume the probability to sequence “C” given “A”, or
sequence “A” given “C” is 0.001: * Haplotype Based Prior or Imputation Based Analysis
P(reads | AA) = dbinom(3, size = 5, prob = 0.001) =9.98e-9 — Compares individuals with similar flanking haplotypes
. . — Calli I hi till ires 20- f th
P(reads | AC) — dblnom(3, size=5, prob - 0.5) -0.312 Calling very rare polymorphisms sti 'reqwres 0-30x coverage of the genome
) ) — Can make accurate genotype calls with 2-4x coverage of the genome
P(reads | CC) = dbinom(2, size =5, prob = 0.001) =9.97e-6

— Accuracy improves as more individuals are sequenced

* Assume population based prior allele frequency P(A) = 0.2:
Prior(AA) = 0.04; Prior(AC) = 0.32; Prior (CC) = 0.64
* Posterior(AA) < 0.001
* Posterior(AC) = 0.999
* Posterior(CC) < 0.001
10



Genotype data format

* Single nucleotide polymorphism (SNP) : One reference allele and one
alternative allele, e.g., AG, AA, GG

 Variant Call Format (VCF): Text file recording one SNP per row

##fileformat=VCFv4.3

##TileDate=20090805

##source=myImputationProgramV3.1
##reference=file:///seq/references/10@00GenomesPilot-NCBI36. fasta
##contig=<ID=20, length=62435964,assembly=B36,md5=f126cdf8a6e@c7f379d618ff66beb2da, species="Homo sapiens",taxonomy=x>
##phasing=partial

##INFO=<ID=NS,Number=1, Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1, Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A, Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1, Type=String,Description="Ancestral Allele">
##INF0=<ID=DB,Number=0, Type=Flag,Description="dbSNP membership, build 129">
##INF0=<ID=H2,Number=0, Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT ,Number=1,Type=String,Description="Genotype'>
##FORMAT=<ID=GQ,Number=1, Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2, Type=Integer,Description="Haplotype Quality">

#CHROM POS ID REF  ALT QUAL FILTER  INFO FORMAT NABQBO1 NAGB0O2 NAQ00O3

20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ ©@|@:48:1:51,51 1|@:48:8:51,51 1/1:43:5:.,.
20 17330 . T A 3 qle NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ ©]@©:49:3:58,50 @|1:3:5:65,3 0/0:41:3

20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4

20 1230237 . T . 47 PASS NS=3;DP=13; AA=T GT:GQ:DP:HQ ©@|@:54:7:56,60 @|0:48:4:51,51 ©/0:61:2

20 1234567 microsatl GTC  G,GTCT 5@ PASS NS=3;DP=9; AA=G GT:GQ:DP 8/1:35:4 0/2:17:2 1/1:40:3



Human genetic variants and sample sizes over

past 20 years

Publication

Ongoing
2016
2015
2012
2010
2010
2008
2007
2005
2003
2002
2001
2000

120,000
32,488
2,500

i oy
179
100,184
8,816
270

270

80

218

800

820

600 million
40 million
80 million
40 million
16 million
2.5 million
2.5 million
3.1 million
1 million
10,000
1,500

127

26

NHLBI Precision Medicine Cohorts / TopMed
Haplotype Reference Consortium (Nature Genetics)
The 1000 Genomes Project (Nature)

The 1000 Genomes Project (Nature)

The 1000 Genomes Project (Nature)

Lipid GWAS (Nature)

Lipid GWAS (Nature Genetics)

HapMap (Nature)

HapMap (Nature)

Chr. 19 Variation Map (Nature Genetics)

Chr. 22 Variation Map (Nature)

Three Region Variation Map (Am J Hum Genet)
T-cell receptor variation (Hum Mol Genet)

12



HapMap Project (2002 - 2010)

* Goal: Develop a haplotype map of the human genome.

 The HapMap is valuable by reducing the number of SNPs required to
examine the entire genome for association with a phenotype from the 10

million SNPs that exist to roughly 500,000 tag SNPs.

* Phase Il HapMap characterizes >3.1M SNPs (~1.3M from Phase |)
genotyped in 270 individuals from 4 populations, including 25-35%
common SNPs (~¥10M), one per kilobase.

e 30 trios of Yoruba (YRI) in Ibadan, Nigeria : African
e 30 trios of Centre d’Etude du Polymorphisme Humain (CEPH) collection (CEU) living

in Utah : European
* 45 unrelated Han Chinese individuals in Beijing (CHB) + 45 unrelated Japanese in

Tokyo (JPT) : Asian

The International HapMap Consortium. Nature 449, 851-861 (2007).
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a, SNP density across the genome. Colours indicate the number of polymorphic
SNPs per kb in the consensus data set. Gaps in the assembly are shown as white. b,
Example of the fine-scale structure of SNP density for a100-kb region on
chromosome 17 showing Perlegen amplicons (black bars), polymorphic Phase |
SNPs in the consensus data set (red triangles) and polymorphic Phase [l SNPs in the

consensus data set (blue triangles). Note the relatively even spacing of Phase I SNPs.

¢, The distribution of polymorphic SNPs in the consensus Phase Il HapMap data
(blue line and left-hand axis) around coding regions. Also shown is the density of
SNPs in dbSNP release 125 around genes (red line and right-hand axis). Values were
calculated separately 5’ from the coding start site (the left dotted line) and 3’ from
the coding end site (right dotted line) and were joined at the median midpoint
position of the coding unit (central dotted line).

Figure 1: SNP density in the
Phase Il HapMap.

The International HapMap Consortium.
Nature 449, 851-861 (2007).
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1000 Genome Project
(2008 - 2015)

Goal: Find most genetic variants with MAF >

1% in populations across the world.

* First project to sequence (¥8X coverage)
the genomes of a large number of people
(n =2504)

e Largest public catalogue of human variation
and genotype data:
http://www.internationalgenome.org/

» 26 different populations under 5 super
populations:

* AFR, African

AMR, Ad Mixed American
EAS, East Asian

EUR, European

SAS, South Asian

The 1000 Genomes Project
Consortium. Nature 526, 68-74
(2015).

From: A global reference for human genetic variation
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a, Polymorphic variants within sampled populations. The area of each pie is proportional to the number of polymorphisms
within a population. Pies are divided into four slices, representing variants private to a population (darker colour unique to
population), private to a continental area (lighter colour shared across continental group), shared across continental areas
(light grey), and shared across all continents (dark grey). Dashed lines indicate populations sampled outside of their

ancestral continental region. b, The number of variant sites per genome. ¢, The average number of singletons per genome.
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http://www.internationalgenome.org/

Table 1. Median autosomal variant sites per genome in 1000 genome project

AFR AMR EAS EUR SAS
Samples 661 347 504 503 489
Mean coverage 8.2 76 7.7 74 8.0

Var. sites Singletons Var. sites Singletons Var. sites Singletons Var. sites Singletons Var. sites Singletons

SNPs 4.31M 14.5k 3.64M 12.0k 3.55M 14.8k 3.53M 11.4k 3.60M 14.4k

Indels 625k - 557k - 546k - 546k - 556k -

Large deletions 1.1k 5 949 5 940 7 939 5 947 5

CNVs 170 1 153 1 158 1 157 1 165 1

MEI (Alu) 1.03k 0 845 0 899 1 919 0 889 0

MEI (L1) 138 0 118 0 130 0 123 0 123 0

MEI (SVA) 52 0 44 0 56 0 53 0 44 0

MEI (MT) 5 0 5 0 4 0 0 4 0

Inversions 12 0 9 0 10 0 9 0 1 0

Nonsynon 12.2k 139 10.4k 121 10.2k 144 10.2k 116 10.3k 144

Synon 13.8k 78 11.4k 67 11.2k 79 11.2k 59 11.4k 78

Intron 2.06M 7.33k 1.72M 6.12k 1.68M 7.39k 1.68M 5.68k 1.72M 7.20k

UTR 37.2k 168 30.8k 136 30.0k 169 30.0k 129 30.7k 168

Promoter 102k 430 84.3k 332 81.6k 425 82.2k 336 84.0k 430

Insulator 70.9k 248 59.0k 199 57.7k 252 57.7k 189 59.1k 243

Enhancer 354k 1.32k 295k 1.05k 289k 1.34k 288k 1.02k 295k 1.31k .
TFBSs 927 4 759 3 748 4 749 3 765 3 The 1000 Genomes PrOJeCt
Filtered LoF 182 4 152 3 153 4 149 3 151 3 Consortium. Nature 526, 68-74
HGMD-DM 20 0 18 0 16 1 18 2 16 0 (2015)

GWAS 2.00k 0 2.07k 0 1.99k 0 2.08k 0 2.06k 0

Clinvar 28 0 30 1 24 0 29 1 27 1

See Supplementary Table 1 for continental population groupings. CNVs, copy-number variants; HGMD-DM, Human Gene

Mutation Database disease mutations; k, thousand; LoF, loss-of-function; M, million; MEIl, mobile element insertions. 16



Sequencing of
53,831 diverse

All unrelated individuals (n = 40,722)

Per individual

genomes from
the NHLBI

TOPMed

Program, Taliun

D. et. al. Nature
2021.

Total Singletons (%) Average 5th percentile Median 95th percentile
Total variants 384,127,954 203,994,740 (53) 3,748,599 3,516,166 3,663,978 4,359,661
SNVs 357043141 189,429,596 (53) 3,653,423 3,335,442 3,380,462 4,125,740
Indels 27,084,813 14,565,144 (54) 195,176 180,616 183,503 233,928
Novel variants 298,373,330 191,557,469 (64) 29,202 20,312 24,106 44,336
SNVs 275141134 177,410,620 (64) 25,027 17,520 20,975 36,861
Indels 23,232,196 14,146,849 (61) 4,175 2,747 3145 7,359
Coding variation 4,651,453 2,523,257 (54) 23,909 22158 22,557 27,716
Synonymous 1,435,058 715,254 (50) 11,651 10,841 11,056 13,678
Nonsynonymous 2,965,093 1,648,672 (56) 11,384 10,632 10,856 13,221
Stop/essential splice 97,217 60,347 (62) 474 425 454 566
Frameshift 104,704 71,577 (68) 132 12 127 165
In-frame 51,997 29110 (56) 102 85 929 128

Novel variants are taken as variants that were not present in dbSNP build 149, the most recent dbSNP version without
TOPMed submissions.

17
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Sequencing of
53,831 diverse
genomes from
the NHLBI
TOPMed

Program, Taliun

D. et. al. Nature
2021.

Fig. 1: Distribution of genetic variants across the genome.

From: Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program

Coding Noncoding o
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od +» 5] gy — W | g
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@
Z g
© 110,000 3
Q
0
g
= 140,000
i B Common high CADD
FE,L00 Rare high CADD
B Common medium CADD
200,000 . Rare medium CADD
Bl Common low CADD
Rare low CADD v

230,000 T |
Segment index 2,737

Common (allele frequency = 0.5%) and rare (allele frequency < 0.5%) variant counts are shown above and below the x axis,
respectively, within 1-Mb concatenated segments (see Methods). Segments are stratified by CADD functionality score, and
sorted based on their number of rare variants according to the functionality category. There were 22 high CADD, 22 medium
CADD and 34 low CADD coding segments, and 40 high CADD, 238 medium CADD and 2,381 low CADD noncoding segments.
Noncoding regions of the genome with low CADD scores (<10, reflecting lower predicted function) have the largest levels of
common and rare variation (noncoding plot region, dark and light blue, respectively), followed by low CADD coding regions
(coding plot region, dark and light blue, respectively). Overall, the vast majority of human genomic variation comprises rare

variation.
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Impute Microarray Genotype Data

» Using WGS reference panel, e.g., 1000 Genome, TOPMed
 Fill in SNP genotypes for those not genotyped by Microarray

* Genotype imputation has become a standard tool in GWAS

* Can only impute variants observed in a reference panel. Reference panels
with millions of deeply sequenced individuals are available.

e Result in “10M imputed common variants
* Improve GWAS power

Facilitating fine-mapping and meta-analysis
Facilitating GWAS results interpretation



Genotype Imputation Intuition

* Any two individuals, even if unrelated, can share short stretches of
chromosome derived from a distant common ancestor.

* Observed genotypes from Microarray can be used to identify DNA
segments shared between the study sample and a reference panel of
sequenced genomes.

* A study haplotype can be represented as a mosaic of short segments of
related haplotypes found in the reference panel.

* Points where the reference haplotype template changes represent
historical recombination events.

* Points where the observed target allele differs from the template allele
represent historical mutation events, gene conversion events, genotype
error, or erroneously assigned matches.



Homologous recombination
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Recombination and Inheritance
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Haplotypes, Genotypes, and Phenotypes

individual 1

individual 2

individual 3

individual 4

individual 5

individual &

SNP1 SNPz SNP3 SNPs SNPs SNPs SNP1 SNPz SNP3 SNP: SNPs SNPs

A |
(e [ WM SG [T TAA] o lng cancer

|CJ'E|A..|'I'|AIT|-E}E| AIT| Arr| no lung cancer

[CIE [ TIm | AT | CiG | I ' no lung cancer

|E}E|A.|"I'_C}E|AIT|M| lung cancer

lung cancer

lung cancer

a) Haplotypes b) Genotypes c) Phenotypes
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The problem of Haplotype
Inference referred to as
Haplotype Phasing. Genotyping
technologies obtain “genotype”
information on SNPs which mixes
the genetic information from
both chromosomes. However,
many genetic analyses require
“haplotype” information (like
genotype imputation) which is
the genetic information on each
chromosome (see Figure).

Haplotype Phasing

Haplotypes Genotype
ATCCGA jTI{Cch{ }
AGACGC 1G[|A

m High throughput cost effective sequencing
technology gives genotypes and not haplotypes.

Possible
phases:

ATACGA AGACGA
AGCCGC ATCCGC
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Observed Genotypes
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Li and Stephens Hidden Markov Mode

'HiddenMarkOVMOdEI(HMM) ) /X1 ATAAGOCACTEAAAGEGGEBECBE AT
* Observed genotypes of unknown .% R|ATARTGCACTGARACGGGEGCGTAC
phase in a study sample represent §< |TGAAGCTCTGAAACGGCGCAC
the observed data of the HMM. Y x[ACTTGCACTGAAACGGCGCAT
e Underlying and unobserved set of é ICESSYEl X444 [BY ST Y
phased genotypes represent the = % [TTTaaTac T n s c

hidden states of the HMM.

* Probability of a template switch
between markers is determined by Missing: S (T . . . G . . .”» . . .T. .A..C.
the HMM transition probabilities,
related to population
recombination rate.

Imputed: S| T g a a Gc tgActaTcgA Agec CTtec

Figure 2

¢ P ro b d bl ||ty t h d t an o bse rve d d | |e | e An illustration of genotype imputation, showing t_he process of imputation for a study haplotype (S.:.;)
differs from the template is o s ] s T o
determined by the HMM emission T s e g o s b il e
probabilities. o iy b o e £ NS s o 3,3,



Markov Model

ﬁP(Xl 51 ﬁP(Xz |55) ﬁP(Xs |55) ﬁP(XM | S)

51 5, 5; Sy
J @ = Q. QT

P(S)) P(S,|S,) P(S,|S,) P(..)

The final ingredient connects template states along the chromosome ...



Possible States

* A state S selects pair of template haplotypes
— Consider S, as vector with two elements (S, ;, S; ,)

* With H possible haplotypes, H? possible states
— H(H+1)/2 of these are distinct

 Arecombination rate parameter describes probability
of switches between states
— P((S;;=23,5,,=b) 2 (5,,1,=3,S,,,=D)) (1-8)°
— P((S;1=2a,S;,=b) > (S;;1,=a%5,,,,=D)) (1-8)6/H
— P((Sm =a,5;,= b) = (Si+1,1 = a*;Si+1,2 = b¥)) (6/H)?



Emission Probabilities
Each value of S implies expected pair of alleles

Emission probabilities will be higher when
observed genotype matches expected alleles

Emission probabilities will be lower when alleles
mismatch

Let T(S) be a function that provides expected
allele pairs for each state S



Emission Probabilities

(1 —8}')2 +e2, T(S)=G;jand G; is heterozygote,
2(1—¢p)e;,  T(5)#G; and G; is heterozygote,
(1 —8]')2, I'(5))=G; and G; is homozygote,
P(Gj[5) =4 (1 —&;)E, I'(5;) is heterozygote and
G; homozygote,
€7, T(S;) and G; are opposite
homozygotes.
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HMM

* The probability of each possible unobserved path through the HMM
hidden states (reference haplotypes) can be calculated.

* Penalized when path switches reference haplotypes via HMM transition
probability

* Penalized when reference allele on the path differs from the observed allele
via HMM emission probabilities

* Probability that the unobserved path goes through a particular HMM
state (state probability per reference haplotype) can be calculated by
HMM forward-backward algorithm

* The probability (Z) that the target haplotype (study sample) carries a
particular allele is the sum of the state probabilities corresponding to
reference haplotypes that carry the allele

e Zis also the expected number of a particular allele




Phasing

* Pre-phasing genotype data of the study sample greatly reduce
computation burden of genotype imputation
 First pre-phasing (haplotype estimation) of the genotypes of study samples
* Imputation into the estimated study haplotypes

* Reduce the complexity of the imputation step from quadratic to
linear in the number of reference haplotypes

* Allowing matches to be found by comparing against phased sample
haplotypes rather than against all pairs of sample haplotypes

e Reduce cost for exploring multiple reference panels
* Benefits from advanced phasing methods



Techniques for Computation Efficiency

* Storing reference data in memory

e Burrows-Wheeler Transform

 M3VCF format :exploits local redundancy among haplotypes by only storing
unique allele sequences along with a map

* Reduce >90% computation time compared with using VCF format with >100K reference
samples

* Allowing reference haplotypes to be locally clustered

* Binary reference format (bref) : Because of the bulk of alleles with low
nonmajor allele frequency in reference panel, only store a list of reference
haplotypes that carry the minor allele (one list per allele)

» Searching the lists of haplotypes to find the allele on a given haplotype
* |If haplotype is not found in any list, the haplotype carries the major allele ~ Minimac3: DasS.

* Reduces >30% computation time with >100K reference samples ‘;’8136'- Nat. Genet.


https://pubmed.ncbi.nlm.nih.gov/27571263/
https://pubmed.ncbi.nlm.nih.gov/27571263/
https://pubmed.ncbi.nlm.nih.gov/27571263/

Techniques for Computation Efficiency

* Clustering identical reference haplotype segments
e Conduct local clustering ahead for the reference panel

 Same allele sequence can be carried by many reference haplotypes in short
regions

* Reduce state space for non-boundary regions

* Imputation via linear interpolation

 HMM state probabilities are calculated for genotyped markers of the study
sample

« HMM state probabilities at imputed markers are estimated by linear
interpolation on genetic distance

* One can cluster reference haplotypes that have identical allele
sequences between two genotyped markers before linear
interpolation

Minimac3: Das S.
et. al. Nat. Genet.
2016
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Figure 1 Overview of state space reduction. We consider a chromosome region with M =9 markers and H = 8 haplotypes: X, X5, ..., Xg. We break the

region into consecutive genomic segments (blocks) and start by analyzing block B from marker 1 to marker 6. In block B, we identify U = 3 unique

haplotypes: Y;, Y», and Y3 (colored in green, red, and blue, respectively). Given we know the left probabilities of the original state space at marker 1 .. .

(that is, L1(X1), ..., L1(Xg)), we fold them to get the left probabilities of the reduced state space at marker 1: £1(Y;), £1(Y5), and £1(Y3). We implement Minimac3: DasS.

HMM on the reduced state space (Y7, Yo, and Y3) from marker 1 to marker 6 to get Lg(Y1), Le(Y2), and Lg(Y3). We next unfold the left probabilities of et. al. Nat. Genet.
the reduced state space at marker 6 to obtain the left probabilities of the original state space: Lg(X1), ..., Lg(Xg). We repeat this procedure on the next
block, starting with Lg(X}), ..., Lg(Xg), to finally obtain Lg(X}), ..., Lo(X). 2016
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Table 1 Genotype imputation tools that employ a hidden Markov model (HMM)

Description of state space

Computational complexity

HMM parameter functions

FastPHASE 2006 All genotype configurations from a fixed number of ~ Maximization-step linear in number of Depends on recombination and mutation rates; parameters are fit using
localized haplotype clusters haplotypes, quadratic in number of an expectation-maximization algorithm
clusters
IMPUTE 2007 All genotype configurations from all reference Quadratic in number of haplotypes Depends on a fine-scale recombination map that is fixed and provided
haplotypes internally by the program
Beagle 2007 = All genotype configurations from a variable number Quadratic in number of haplotypes Empirical model with no explicit parameter functions
of localized haplotype clusters
IMPUTE2 2009 All reference haplotypes Phasing quadratic in number of Same as IMPUTE
haplotypes, imputation linear in number of
haplotypes
MaCH 2010 All genotype configurations from all reference Quadratic in number of haplotypes Depends on recombination rate, mutation rate, and genotyping error;
haplotypes parameters are fit using a Markov chain Monte Carlo or expectation-
maximization algorithm
Minimac and 2012 All reference haplotypes Linear in number of haplotypes Same as MaCH
Minimac2
Minimac3 2016 Allunique allele sequences observed in reference Linear in number of haplotypes Same as MaCH, but parameter estimates are precalculated and fixed
data in a small genomic segment
Beagle 4.1 2016 All reference haplotypes at genotyped markers Linear in number of haplotypes Depends on recombination rates and error rates, which are
precalculated and fixed
Minimac4 2017 Collapsed allele sequences from reference data Linear in number of haplotypes Same as Minimac3
that match at genotyped positions in small
genomic segments
IMPUTE42 2017 All possible reference haplotypes Linear in number of haplotypes Same as IMPUTE2
Beagle 5.0 2018 Auser-specified number of reference haplotypes Linear in number of haplotypes Same as Beagle 4.1

This table describes the typical state space and parameter functions used to model the Li and Stephens framework. Minimac and IMPUTE2 were the first tools to use the prephasing approach. Minimac3
and Beagle 4.1 exploit local haplotype redundancy to reduce the size of the state space and hence the computational burden.

AIMPUTE4 uses the same HMM as IMPUTE2; however, to reduce memory usage and increase speed, it uses compact binary data structures and takes advantage of high correlations between inferred
copying states in the HMM to reduce computation.

Das S. et. al.
Annual Reviews.
2018.
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Measuring Imputation Accuracy

* Imputation methods estimate a probability distribution for the allele
carried by each haplotype per imputed marker

* Posterior genotype probabilities can be derived under HWE

* Expected allele dose (dosage) of the imputed genotype is given by the
sum of the posterior allele probabilities for each haplotype — used

for follow-up GWAS

* Imputation r? : Squared correlation between the true and estimated
dose of an allele across all imputed samples
e Can be estimated from posterior allele probabilities without knowing the true

allele
* Threshold 0.3 is commonly used




ESTIMATING 7*

One attractive feature of 72, the squared correlation between true and imputed allele dose, is that it can be estimated
from posterior allele probabilities without knowing the true allele on each chromosome. Here, we derive an estimate
of 7 in terms of the posterior allele probabilities.

Let X be 1 if a chromosome carries the allele of interest and be 0 otherwise, and let Z be the estimated posterior
allele probability that X = 1. Then 7 is defined to be the squared correlation of X and Z. We say that the posterior
allele probabilities are correctly calibrated if E[X | Z] = Z. If the posterior allele probabilities are correctly calibrated,
we can use the law of total expectation and the fact that X? = X to obtain

E[X’] = E[X] = E[E[X|Z]] = E[Z]
Var(X) = E[X?] - E[X]’
= E[Z] - E[Z]

and
Cov(X, Z) = E[XZ] — E[X]E[Z]
= E[E[XZ|Z]] - E[E[X |Z]] E[Z]
= E[Z] - E[Z]E[Z]
= Var(2).

Consequently,
. _ Coux,2)
Var(X)Var(Z)

Var(2)
Var(X)

_ E[Z’] - E[Z}’
E[Z] - E[Z]

Das S. et. al. Annual
If there are » imputed chromosomes and z; is the estimated reference allele probability in the ith haplotype, one }
can estimate E[Z*] as E[Z*] ~ (1/m)}_ 2! and #* as Reviews. 20138.

’? r ny z — (Zzi)z
"ZZ:' _(Zzi)r 40
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Table 2 The most commonly used public reference panels to date

Number of reference

Reference panel

International HapMap Project 1,011
phase 3

1000G phase 1 1,092
1000G phase 3 2,504
UK10K Project 3,781
HRC 32,470
TOPMed 60,039

Number of sites (autosomes + X Average sequencing Ancestry distribution Publicly Indels Reference
samples chromosome) coverage available EVETEL

1.4 million NA2 Multiethnic Yes No 47

28.9 million 2-6% Multiethnic Yes Yes 1

81.7 million 7 genomes, 65% Multiethnic Yes Yes 3
exomes

42.0 million 7x genomes, 80 x European Yes Yes 89
exomes

40.4 million 4-gxP Predominantly Partiallyd No 69

European®
239.7 million 30x% Multiethnic Partially® Yes 71

Abbreviations: 1000G, 1000 Genomes Project; HRC, Haplotype Reference Consortium; indel, insertion or deletion; NA, not applicable; TOPMed, Trans-Omics for Precision Medicine.

aThe International HapMap Project phase 3 data were genotyped on the lllumina Human1M and Affymetrix 6.0 SNP arrays.
bThe HRC panel was obtained by combining sequencing data across many low-coverage (4-8x) and a few high-coverage sequencing studies.
CThe only non-European samples in the HRC panel are through the 1000G reference panel (which was a contributing study).
dMost of the HRC samples (~27,000) are available for download through controlled access from the European Genome-Phenome Archive.

€Some of the TOPMed samples (~18,000) are available for download through controlled access from the Database of Genotypes and Phenotypes (dbGaP).

Das S. et. al. Annual

Reviews. 2018.

41


https://doi.org/10.1146/annurev-genom-083117-021602
https://doi.org/10.1146/annurev-genom-083117-021602

European

1.0F
081
06

04r

Imputation r2

02r

1074 1073
East Asian

1072

107

10FT
08}
06
04}

Imputation r2

0.2

1073 102

African

1077

1.0F

08r

06

Imputation r2

04rF

1073 1072

107!

Alternate allele frequency

A Das S, et al. 2018.
» [ ]
Al Annu. Rev. Genom. Hum. Genet. 1

9:73

96

Admixed American
1.o-b' 1 T
09t
08

0.7 r

06 r

1073 102 107!
Southeast Asian

1.0 d

08 r
061
04 r

0271

1073 1072 1071
Alternate allele frequency
— TOPMed

— HRC
— 1000G phase 3

Figure 5 Imputation accuracy for five ancestries: (a)

European, (b) admixed American, (c) East Asian, (d) Southeast
Asian, and (e) African. We extracted 10 samples from each of
these ancestries from the 1000 Genomes Project (1000G) phase 3
data, masked all variants except those on the Illumina 1M chip,
and imputed them using the Trans-Omics for Precision Medicine
(TOPMed) (with 18,000 samples), Haplotype Reference
Consortium (HRC), and 1000G phase 3 (after removing overlaps)
reference panels. The aggregate r (measuring the imputation
accuracy) is plotted as a function of the alternate allele
frequency.

Das S. et. al. Annual
Reviews. 2018.
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Summary of Genotype Imputation

» Using WGS reference panel, e.g., 1000 Genome, TOPMed

 Fill in SNP genotypes for those not genotyped by Microarray

* Check imputation r? : accept imputed genotypes with r? > e.g., 0.3
* Result in “10M common variants

* Imputed genotype data
e Dosage format — expected number of minor alleles with domain [0, 2]
e Genotype format — number of minor alleles with values O, 1, or 2
* Genotype with the highest estimated probability will be reported
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Int. HapMap Consort. 2003

Int. Hum. Genome Seq. Consort. 2004
Klein et al. 2005

Int, HapMap Consort. 2005

Scheet & Stephens 2006

Scott et al. 2007,
Wellcome Trust Case Control Consort. 2007

Marchini et al. 2007

Browning & Browning 2007

Int. HapMap Consort. 2007

Howie et al. 2009

Int. HapMap 3 Consort. 2010

1000 Genomes Proj. Consort. 2010

Lietal. 2010

Howie et al. 2012

1000 Genomes Proj. Consort. 2012

Howie et al. 2012

Fuchsberger et al, 2015

1000 Genomes Proj. Consort. 2015
Dasetal. 2016

Das etal. 2016

Browning & Browning 2016

McCarthy et al. 2016

TOPMed Consort., manuscript in preparation
Bycroft et al. 2017

S. Das, K. Yu & G.R. Abecasis, manuscript in

preparation

S. Das, K. Yu & G.R. Abecasis, manuscript in
preparation

B.L. Browning, Y. Zhou & S.R. Browning,
manuscript in preparation

Figure 1 Abrief time line summarizing the major
developments in genotype imputation. Each major development
has been categorized as a milestone (green), a reference panel

(blue), or software (white).

Das S. et. al. Annual
Reviews. 2018.
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Factors Affecting Genotype Imputation
Accuracy

* Size of reference panel
* Density of genotyping array

* Minor allele frequency of variant being imputed (in the reference
panel)

* Haplotype accuracy in reference and study samples
* Sequencing coverage of reference panel (ancestry matches)



What is Association Studies?

* Test associations between markers/SNPs/genes and the trait of
Interest
* Test whether the trait and genotype are independent

* Population Data: Generalized linear regression model based tests

* Family Data



Population-based Association Studies

* Phenotype(s) of interest
* Dichotomous trait, e.g., case/control
* Quantitative trait, e.g., Height, BMI, Lipids

 Mendelian vs. Complex phenotypes

* Number of markers tested
* May range from 1 to ~10 million
* Candidate gene study (often appear as replication study)

 Genome-wide association study (GWAS)



GWAS

Genome-wide Association Study

(GWAS) |
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From Quora.com and Pasaniuc B & Price AL, Nat. Rev. 2017



Phenotype and covariate data

* Phenotype data
* Dichotomous traits: 0/ 1
* Quantitative traits : observed continuous quantitative values

e Covariate data
* Gender
* Age
 BMI
e Batches, etc.



Single Variant GWAS

* Test one SNP per time
* Test genome-wide variants independently

* Suitable for common SNPs with minor allele frequency (MAF) > 1%, or
0.1%



Logistic Regression Model for Studying Dichotomous
Phenotype

— Y = dichotomous phenotype
— X = a coding for the genotype

Genotype | Codominant Dominant Recessive Additive
AA X=01D" Xx=1 X=1 X=2
Aa X=01,00" Xx=1 X=0 X=1
aa X=0,0' X=0 X=0 X=0

Assume a logistic regression model:
10g[Pr(Y = 1|1X)
Pr(Y = 0|X)
where [, is the intercept, a is the coefficient for covariates C, and 3; is the genetic
effect-size (i.e., log(Odds-Ratio) ).

]=ﬁ0+a’C+E1X

H()Zﬁl:()

Ha:ﬁlth



Test Statistic

: 7 = By -
Wald Test: Z = Standard Error(E) N (0, 1) under H,
B\Z
° - Y2 — 1 ~ . . —
Chi-square Test: X Var(E) Chi_Square with df=1 under H,

* How to obtain p-value?



Advantages of Logistic Regression Model

* Account for confounding covariates (C), e.g., age, gender, BMI,
smoking

 Flexible for various genetic models
* Flexible for testing multiple markers in the same model (modeling LD)

* Equivalent to the corresponding Chi-square test using contingency
tables, if not modeling covariates

* Allow gene-environment interactions
* Without the assumption of HWE



Study Quantitative Trait

* Linear regression model
Y =p8,+aC+pX+e e€~N(0,0%)
* Y represents the quantitative trait values
* X represents the genotype data (0, 1, 2) for additive genetic model
* (C represents the confounding covariates or other environmental variables
* € represents the error term, other unknown factors

’Ho:ﬁ]_:O ,Haﬁl-',&()

* P-values can be obtained by Wald Test, T-test, Score test, Log
likelihood test, etc.



Genome-wide Association Study (GWAS)

GWAS: independent single-variant tests across all genome-wide variants

e Quality control (QC) of the study dataset

e Choose a model/test for the phenotype of interest (e.g., linear regression model
for quantitative traits, logistic regression model for dichotomous traits, other
association tests from previous lecture)

e Significance level @ = 5 x 107°

e Report nearby genes of significant SNPs



Visualize GWAS Results by Manhattan Plot

— Scatter plot of —log 10(p-values) across all genome-wide variants
— Visualize signal peaks
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GWAS Results
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18 known AMD loci and 16 novel AMD loci



Visualize GWAS Loci by Locus Zoom Plot

— Zoom into the peak region with gene annotations

— Visualize r* between the specified significant (purple diamond) signal and its

neighbor SNPs
— Visualize recombination rate
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100 -

-logq(p-value)

LocusZoom Visualization of GWAS of BMI , Women only
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LocusZoom Visualization of GWAS of BM|

BMI meta-analysis, women only
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Example GWAS Discoveries

12500 }Iﬁ:Disease or Trait 1
| |Disease or Trait 2
DDisease or Trait 3
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| SNPs for the trait or disease
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Alzheimer disease and age of onset
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Figure 2. GWAS SNP-Trait Discovery Timeline

Till 09/2016

Data used for generating the graph were taken from the GWAS Catalogue.'’ SNPs and traits were selected according to the following
filters. SNPs were selected with a p value < 5 x 107®. For each trait with two or more selected SNPs, SNPs were removed if they had
an LD r* > 0.5 (calculated from 1000 Genomes phase 3 data) with another selected SNPs and their p value was larger. For each year

of discovery, only the top three traits and diseases with the largest number of SNPs are labeled in the circle.

Visscher P.M.

et al. AJHG
2017.
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Figure 1. Average sample size and average number of genome-wide significant (GWS) loci per publication for each year during the

15 years history of GWAS discoveries

The data were extracted from 5,771 GWAS publications that used a genome-wide genotyping array and shared their summary statistics

on GWAS Catalog before November 8, 2022. 62



Published Genome-Wide Associations as of July 2019
p<5X10-8 for 17 trait categories

GWAS
Catalogue
Diagram

@ Digestive system disease

@ Cardiovascular disease

@ Metabolic disease

(© Immune system disease

(O Nervous system disease

@ Liver enzyme measurement
O Lipid or lipoprotein measurement
()] y marker

@ Hematological measurement
@ Body measurement

@ Cardiovascular measurement
@ Other measurement

(O Response to drug

@ Biological process

@ Cancer

@ Other disease

@ Other trait

National Human Genome EMBL-EBI 5:5::5235 NHGRI_EBI GWAS Catalog
www.ebi.ac.uk/gwas 63
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Genetic architecture of complex traits

Family-based Sequencing
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Example links between GWAS discoveries and
drug developments

GWAS hits Gene

"
. h .

, ,e np".ﬂ'"“'*l’- C2
.

A
Trait Gene with GWAS hits Known or candidate drug
Type 2 Diabetes SLC30A8/KCNJ11 ZnT-8 antagonists/Glyburide
Rheumatoid Arthritis PADI4/IL6R BB-Cl-amidine/Tocilizumab

Spﬁrr‘llzir/llti)t?:(‘f\S) THERLETGERS/TRZ inhibitors/ NSZ\II\IDFs_/fostamatinib

Psoriasis(Ps) IL23A Risankizumab

Osteoporosis RANKL/ESR1 Denosumab/Raloxifene and HRT

Schizophrenia DRD2 Anti-psychotics Visscher P.M.
LDL cholesterol HMGCR Pravastatin etal. AJHG

AS, Ps, Psoriatic Arthritis 1L12B Ustekinumab 2017.
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GWAS Tools

* Michigan Imputation Server
e https://imputationserver.sph.umich.edu

e GWAS Tool

* PLINK: https://www.cog-genomics.org/plink/2.0/
* EPACTS: https://genome.sph.umich.edu/wiki/EPACTS

 GWAS Results Visualization and Manhattan/LocusZoom Plot Tool
e https://my.locuszoom.org/
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Outline of Next Lecture

* Quality Control
* Genotype Quality Control
 Sample Relatedness: Kingship Coefficient

* Population Stratification

* Genomic Control Factor
* Genotype Principal Components Analysis
* Meta-analysis

* Linear Mixed Model (LMM)
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