
Instructions to BASH Shell
Scripts

Jingjing Yang
Department of Human Genetics

Tips
• SSH Login without Password

• Local computer: Generate a pair of authentication keys. Do not enter a passphrase.
• ssh-keygen -t rsa

• Login to cluster: Create a directory ~/.ssh
• mkdir -p .ssh

• Local computer: Append your local public key to ~/.ssh/authorized_keys
• cat .ssh/id_rsa.pub | ssh user@ hgcc.genetics.emory.edu 'cat >> .ssh/authorized_keys’

• More information: http://www.linuxproblem.org/art_9.html

• Personalize Your Shell Command
• MAC Users: Add your commands to the ~/.bash_profile under your home directory
• PC Users: Add your commands to ~/.bashrc or ~/.profile
• HGCC: Add your commands to ~/.bashrc.user
• Add shortcut for your commands by creating environment variables (e.g., set ll as short cut for ls -l -t -G):

export ll=‘ls -l -t -G’
• Or use alias:

• alias hgcc='ssh userID@hgcc.genetics.emory.edu'
• alias c='clear'
• alias e='exit'

• One difference between the export and alias is that alias is only a shell feature. Environment variables
are inherited by all subprocesses (unless deliberately cleared).

http://www.linuxproblem.org/art_9.html

Mont Cluster Directory on MAC

• Step1: Install SSHFS (https://github.com/osxfuse/sshfs/releases),
latest version SSHFS 2.5.0
• Step2: Install FUSE (https://osxfuse.github.io/), Latest version FUSE

for macOS 3.7.1
• Step3: After the installation user has to create a folder, mount point,

on user’s host machines. Then in terminal execute the command:
• sshfs username@server:/path on server/ ~/path to mount point
• My example command: sshfs jyang@hgcc.genetics.emory.edu:/home/jyang/

/Users/jyang51/Volume/ -o auto_cache -ovolname=HGCC -o follow_symlinks

•Original resource (FAQs) about osxfuse:
https://github.com/osxfuse/osxfuse/wiki/SSHFS

https://github.com/osxfuse/sshfs/releases
https://osxfuse.github.io/
https://github.com/osxfuse/osxfuse/wiki/SSHFS

Mont Cluster Directory on PC

• Use WinSCP, https://winscp.net/eng/index.php

https://winscp.net/eng/index.php

BASH Shell Script

• Why use BASH script?
• Wrap Linux commands and tools together
• Write a pipeline
• Easier for submit jobs

• Create a BASH script:
• Use a text editor such as vi to create a text file containing linux commands
• First line contains the magic “shbang” sequence: #!/bin/bash
• Comments start with “#” except for the first “shbang” line
• Use “\” at the end of a line to break one command into multiple lines
• Make the script executable: chmod 755

• 7 is the combination of permissions 4+2+1 (read, write, and execute), 5 is 4+0+1(read, no write, and
execute)

• Order of permission for: user, group, others

• Run a BASH script: ./example_bash.sh or bash -x example_bash.sh

BASH Shell Script
• Cons: have very little built-in math (consider using other Tools: R)

• Back quotes means executing the command inside the quotes first

and then assign the output as values for the variable on the left-hand-

side

• some_variable=`some Unix command`

• some_variable=$(some Unix command)

• Each source code line is printed prior to its execution when specify -x

• Either in the header (first line, i.e., shebang, in the script): #!/bin/bash -x

• Or on the command line: bash -x example_bash.sh

Common Syntax in BASH Script

• if/else (Here [] is part of the command, and the space is important around [])
if [condition] ; then

commands
fi

if [condition] ; then
commands

else
commands

fi

if [condition] ; then
commands

elif [condition] ; then
commands

fi

Logic Syntax

• Numeric comparison: -eq, -ne, -gt, -ge, -lt, -le
• String comparison: =, !=, <, >, -z, -n
• Directory exist: if [! –d $dir] ; then …
• Plain file: if [-f $myfile]; then …
• File empty: if [-z $myfile] ; then …
• Executable file: if [-x $myfile]; then …
• || and && operands inside if condition (i.e. between round parentheses)

are logical operands (or/and)
• || and && operands outside if condition mean then/else

([$a -eq 1] || [$b -eq 2]) && echo "ok" || echo "nok"

• Practically the statement says: if (a=1 or b=2) then "ok" else "nok"

Logic Syntax

• Loop:
for var in bash-list ; do

commands
done

while [condition] ; do
commands

done

AWK: Useful Tool in BASH

• The word awk is derived from the names of its inventors!!!
• awk is actually Aho Weinberger and Kernighan.
• From the original awk paper published by Bell Labs, awk is
• “ Awk is a programming language designed to make many common

information retrieval and text manipulation tasks easy to state and to
perform.”

• Simply put, awk is a programming language designed to search for,
match patterns, and perform actions on files.

AWK: Useful Tool in BASH
awk options program file
• Options:
• To specify a file separator: -F fs
• To declare a variable: -v var=value

• Program:
• To define an awk script, use braces surrounded by single quotation marks like

this:
awk ’{print "Welcome to awk command tutorial "}’

• pattern { action }
• awk –F”\t” ‘NR==1{print $0}’ file
• BEGIN {…} pattern {…} pattern{…}END{…}
• Commands in {…} are separated by semicolons “;”

AWK: Useful Tool in BASH
• Built-in Variables: $0, $1, NR, FNR, NF

• Built-in Math Functions: sin(x), cos(x), sqrt(x), exp(x), log(x)

• C operators like: ++, --, +=, -=

• More information:

• https://likegeeks.com/awk-command/

• https://www.ibm.com/developerworks/library/l-awk1/

https://likegeeks.com/awk-command/
https://www.ibm.com/developerworks/library/l-awk1/

Example 1: run FastQC on a single file

• Step 1: Create a folder to hold all files related to the task/project
• Recommended folder structure

• ${HOME}/project
• ${HOME}/project/data
• ${HOME}/project/refs
• ${HOME}/project/logs
• ${HOME}/project/output
• ${HOME}/project/sge

• Step 2: Create the job submission script in ${HOME}/project/sge
• Recommend to create scripts for each step, e.g. FastQC, mapping, calling, etc.
• Give a descriptive name to your scripts e.g. step01_fastqc.sh

Example 1: run FastQC on a single file
1. #!/bin/sh

2. # This script requires a single parameter when

3. # called – the portion of the file name

4. # preceding .fastq.gz or .bam. This is usually

5. # the <sample_name>

6. #

7. # The output directory (OUTDIR) needs to exist

8. module load FastQC

9. PRJDIR=“${HOME}/project”

10. DATADIR=“${PRJDIR}/data”

11. OUTDIR=“${PRJDIR}/output/FastQC”

12. if [-e /bin/mktemp]; then

13. TMPDIR=`/bin/mktemp –d /scratch/XXXXXX`

14. elif [-e /usr/bin/mktemp]; then

15. TMPDIR=`/usr/bin/mktemp –d /scratch/XXXXXX`

16. else

17. echo “Error. Cannot find program to create tmp directory”

18. exit

19. fi

18. cp ${DATADIR}/$1.fastq.gz ${TMPDIR}

19. fastqc –o ${TMPDIR} --no-extract ${TMPDIR}/$1.fastq.gz

20. /bin/rm ${TMPDIR}/$1.fastq.gz

21. rsync –av ${TMPDIR}/ ${OUTDIR}/$1

22. /bin/rm –fr ${TMPDIR}

23. module unload FastQC

Line numbers are not part of the script!
• Line 8 load the FastQC module
• Lines 9-11 defines some variables to use in

the script
• Lines 12-19 create the unique folder in

/scratch
• Line 18 copies data to the unique folder
• Line 19 runs the fastqc program
• Line 20 deletes the data copied in line 18
• Line 21 copies results back to the project

folder
• Line 22 removes the unique scratch folder
• Line 23 unload the FastQC module

Example 1: run FastQC on a single file

• Step 3: submit your job:
• Change into the logs folder:

cd ${HOME}/project/logs

• Submit the job
qsub –q b.q –cwd –j y ../sge/step01_fasqtc.sh <sample_name>

• This command will run your job, generate logs in the current directory, and merge the .o
and .e files into one

• One useful option is to have SGE email you when the job completes:
qsub –q b.q –cwd –j y –M youremail@emory.edu
../sge/step01_fastqc.sh <sample_name>

