
Simple-Job-Array-Howto

From GridWiki

Contents

1 Array jobs for clusters running SGE
1.1 The problem
1.2 Array jobs are the solution
1.3 The basic commands

1.3.1 A more complex example

1.3.2 Pulling data from the i th line of a file
1.3.3 What if you number files from 0 instead of 1?

1.4 Example: R Scripts with Grid Engine Job Arrays

Array jobs for clusters running SGE
Last modified by: --Dag 16:51, 5 June 2006 (EDT) This document is based on a
PDF written by Kevin Thornton, modified and reproduced on this Wiki with his
permission.

The problem

A common problem is that you have a large number of jobs to run, and they are
largely identical in terms of the command to run. For example, you may have
1000 data sets, and you want to run a single program on them, using the
cluster. The naive solution is to somehow generate 1000 shell scripts, and
submit them to the queue. This is not efficient, neither for you nor for the head
node.

Array jobs are the solution

There is an alternative on SGE systems – array jobs. The advantages are:

You only have to write one shell script1.
You don’t have to worry about deleting thousands of shell scripts, etc.2.
If you submit an array job, and realize you’ve made a mistake, you only have3.

Simple-Job-Array-Howto - GridWiki http://wiki.gridengine.info/wiki/index.php/Simple-Job...

1 sur 5 18/03/09 10:20

one job id to qdel, instead of figuring out how to remove 100s of them.
You put less of a burden on the head node.4.

In fact, there are no disadvantages that I’m aware of. Submitting an array job to
do 1000 computations is entirely equivalent to submitting 1000 separate scripts,
but much less work for you.

The basic commands

In this section, I assume that you prefer the bash shell. To review, a basic SGE
job using bash may look like the following:

#!sh
#$ -S /bin/bash
~/programs/program -i ~/data/input -o ~/results/output

Now, let’s complicate things. Assume you have input files input.1, input.2, . . . ,
input. 10000, and you want the output to be placed in files with a similar
numbering scheme. You could use perl to generate 10000 shell scripts, submit
them, then clean up the mess later. Or, you could use an array job. The
modification to the previous shell script is simple:

#!sh
#$ -S /bin/bash
Tell the SGE that this is an array job, with "tasks" to be numbered 1 to 10000
#$ -t 1-10000
When a single command in the array job is sent to a compute node,
its task number is stored in the variable SGE_TASK_ID,
so we can use the value of that variable to get the results we want:
~/programs/program -i ~/data/input.$SGE_TASK_ID -o ~/results/output.$SGE_TASK_ID

That’s it. When the above script is submitted, it will find available nodes, and
jobs will execute in order of the task IDs specified by the -t option. Also, the
array job is subject to all the fair queueing rules. The above script is entirely
equivalent to submitting 10000 scripts, but without the mess.

A more complex example

This is a modification of the above which only runs the program if the output file
is not present. Please note that these sorts of checks in bash are whitespace-
sensitive, which is a common cause of errors. In particular, in the if statement,
all spaces must be one single space, regardless of what the typesetting shows:

Simple-Job-Array-Howto - GridWiki http://wiki.gridengine.info/wiki/index.php/Simple-Job...

2 sur 5 18/03/09 10:20

#!sh
#$ -S /bin/bash
Tell the SGE that this is an array job, with "tasks" to be numbered 1 to 10000
#$ -t 1-10000
When a single command in the array job is sent to a compute node,
its task number is stored in the variable SGE_TASK_ID,
so we can use the value of that variable to get the results we want:
if [! -e ~/results/output.$SGE_TASK_ID]
then
~/programs/program -i ~/data/input.$SGE_TASK_ID -o ~/results/output.$SGE_TASK_ID
fi

Pulling data from the i th line of a file

Let’s say you have a list of numbers in a file, one number per line. For example,
the numbers could be random number seeds for a simulation. For each task in
an array job, you want to get the ith line from the file, where i equals
SGE_TASK_ID, and use that value as the seed. This is accomplished by using the
unix head and tail commands. (Read the man pages for those commands – don’t
ask me.)

#!sh
#$ -S /bin/bash
#$ -t 1-10000
SEEDFILE=~/data/seeds
SEED=$(cat $SEEDFILE | head -n $SGE_TASK_ID | tail -n 1)
~/programs/simulation -s $SEED -o ~/results/output.$SGE_TASK_ID

You can use this trick for all sorts of things. For example, if your jobs all use the
same program, but with very different command-line options, you can list all the
options in the file, one set per line, and the exercise is basically the same as the
above, and you only have two files to handle (or 3, if you have a perl script
generate the file of command-lines).

As an alternative to using cat, head and tail, the unix sed command could also be
used directly (again, see the man pages and experiment a bit).

#!/bin/sh
#$ -S /bin/bash -t 1-10000
SEEDFILE=~/data/seeds
SEED=$(sed -n -e "$SGE_TASK_ID p" $SEEDFILE)
~/programs/simulation -s $SEED -o ~/results/output.$SGE_TASK_ID

In this example, the '-n' option suppresses all output except that which is
explicitly printed (on the line equal to SGE_TASK_ID).

What if you number files from 0 instead of 1?

The -t option will not accept 0 as part of the range, i.e. #$ -t 0-99 is invalid, and

Simple-Job-Array-Howto - GridWiki http://wiki.gridengine.info/wiki/index.php/Simple-Job...

3 sur 5 18/03/09 10:20

will generate an error. However, I often label my input files from 0 to n − 1.
That’s easy to deal with:

#!sh
#$ -S /bin/bash
Tell the SGE that this is an array job, with "tasks" to be numbered 1 to 10000
#$ -t 1-10000
let i=$SGE_TASK_ID-1
if [! -e ~/results/output.$i]
then
~/programs/program -i ~/data/input.$i -o ~/results/output.$i
fi

Example: R Scripts with Grid Engine Job Arrays

All of the above applies to well-behaved, interactive program. However,
sometimes you need to use R to analyze your data. In order to do this, you have
to hardcode file names into the R script, because these scripts are not
interactive. This is a royal pain. However, there is a solution that makes use of
HERE documents in bash. HERE documents also exist in perl, and an online
tutorial for them in bash is at http://www.tldp.org/LDP/abs/html/here-docs.html.
The short of it is that a HERE document can represent a skeleton document at
the end of a shell script. Let’s concoct an example. You have 100 data files,
labeled data.1 to data.10. Each file contains a single column of numbers, and
you want to do some calculation for each of them, using R. Let’s use a HERE
document:

#!sh
#$ -S /bin/bash
#$ -t 1-10
WORKDIR=/Users/jl566/testing
INFILE=$WORKDIR/data.$SGE_TASK_ID
OUTFILE=$WORKDIR/data.$SGE_TASK_ID.out
See comment below about paths to R
PATHTOR=/common/bin
if [-e $OUTFILE]
then
rm -f $OUTFILE
fi
Below, the phrase "EOF" marks the beginning and end of the HERE document.
Basically, what’s going on is that we’re running R, and suppressing all of
it’s output to STDOUT, and then redirecting whatever’s between the EOF words
as an R script, and using variable substitution to act on the desired files.
$PATHTOR/R --quiet --no-save > /dev/null <<EOF
x<-read.table("$INFILE")
write(mean(x\$V1),"$OUTFILE")
EOF

So now you can use the cluster to analyze your data – just write the R script
within the HERE document, and go from there. As I’ve only just figured this out,
some caveats are necessary. If anyone experiments and figures out something
neat, let me know. Be aware of the following:

Simple-Job-Array-Howto - GridWiki http://wiki.gridengine.info/wiki/index.php/Simple-Job...

4 sur 5 18/03/09 10:20

In my limited experience, indenting is important for HERE documents. In
particular, it seems that the beginning and end (i.e. both lines containing
the term EOF in the above example), must be aligned with the left-hand
edge of the buffer (i.e. not indented at all). So, if you use a HERE document
in a conditional or control statement, be mindful of this.

1.

In the mean command, I escaped the dollar sign with a backslash. In my
limited experiments, both mean(x\$V1) and mean(x$V1) seem to work.
However, escaping the dollar sign for the read.table command prevents the
variable substitution from occurring in the shell, causing R to fail, because
the input file named $INFILE cannot be found. In other words, escaping in
that context causes the HERE doc to pass $INFILE as a string literal to R,
rather than the value stored in the shell variable.

2.

This is more useful than just array jobs on an SGE system. If you know bash
well enough, you can write a shell script that takes a load of arguments,
and processes them with a HERE document. This solves a major limitation
with R scripts themselves. You can do the same in perl, too, on your
workstation, but you must use a shell language on the cluster.

3.

Retrieved from "http://wiki.gridengine.info/wiki/index.php/Simple-Job-Array-
Howto"

This page was last modified 02:39, 7 December 2007.

Simple-Job-Array-Howto - GridWiki http://wiki.gridengine.info/wiki/index.php/Simple-Job...

5 sur 5 18/03/09 10:20

